import warnings
from abc import ABC, abstractmethod
from itertools import combinations, product
from typing import List, Tuple, cast
import numpy.random
from numpy.random import Generator
from pytket import Circuit
from pytket._tket.unit_id import UnitID
from pytket.circuit import Bit, CircBox, Command, OpType, Qubit
from pytket.pauli import Pauli, QubitPauliString, QubitPauliTensor
from qermit.noise_model.noise_model import NoiseModel
from qermit.noise_model.qermit_pauli import QermitPauli
[docs]
class PauliSampler(ABC):
"""Abstract base class for Pauli samplers. Pauli samples should sample
Paulis to be used a checks.
"""
[docs]
@abstractmethod
def sample(self, circ: Circuit) -> List[QermitPauli]:
"""Sample checks for given circuit.
:param circ: The circuit for which checks should be sampled.
:return: Pauli checks sampled
"""
pass
[docs]
def add_pauli_checks_to_circbox(
self,
circuit: Circuit,
) -> Tuple[Circuit, set[Bit]]:
"""Add checks to all subcircuits labeled "Clifford Subcircuit".
:param circuit: Circuit to add checks to.
:return: Circuit with checks added.
"""
# Initialise new circuit and add matching qubits.
pauli_check_circuit = Circuit()
for qubit in circuit.qubits:
pauli_check_circuit.add_qubit(qubit)
for bit in circuit.bits:
pauli_check_circuit.add_bit(bit)
ancilla_count = 0
postselect_bits = set()
# Add each command in the circuit, wrapped by checks
# if the command is a circbox named 'Clifford Subcircuit'
for command in circuit.get_commands():
# Add barriers and check if appropriate
if (
(command.op.type == OpType.CircBox)
and (cast(CircBox, command.op).get_circuit().name is not None)
and (
str(cast(CircBox, command.op).get_circuit().name).startswith(
"Clifford Subcircuit"
)
)
):
clifford_subcircuit = self._decompose_clifford_subcircuit_box(command)
# List of Paulis to be used as checks before the subcircuit.
start_stabiliser_list = self.sample(
circ=clifford_subcircuit,
)
# TODO: check that register names do not already exist
control_qubit_list = [
Qubit(name="ancilla", index=i)
for i in range(
ancilla_count, ancilla_count + len(start_stabiliser_list)
)
]
ancilla_count += len(start_stabiliser_list)
# Add ancilla qubits and check gates
for start_stabiliser, control_qubit in zip(
start_stabiliser_list, control_qubit_list
):
pauli_check_circuit.add_qubit(control_qubit)
pauli_check_circuit.add_barrier(command.args + [control_qubit])
pauli_check_circuit.H(
control_qubit,
opgroup="ancilla superposition",
)
stabiliser_circuit = start_stabiliser.get_control_circuit(
control_qubit=control_qubit
)
pauli_check_circuit.append(
circuit=stabiliser_circuit,
)
pauli_check_circuit.add_barrier(command.args + [control_qubit])
end_stabiliser_list = [
start_stabiliser.dagger
for start_stabiliser in start_stabiliser_list
]
# Add original command
pauli_check_circuit.add_gate(command.op, command.args)
# Add barriers and checks if appropriate.
if (command.op.type == OpType.CircBox) and (
cast(CircBox, command.op).get_circuit().name == "Clifford Subcircuit"
):
# For each check, commute the pauli through
# the clifford circuit.
for end_stabiliser, control_qubit in zip(
reversed(end_stabiliser_list), reversed(control_qubit_list)
):
for clifford_command in clifford_subcircuit.get_commands():
if clifford_command.op.type == OpType.Barrier:
continue
# TODO: an error would be raised here if clifford_command
# is not Clifford. It could be worth raising a clearer
# error.
end_stabiliser.apply_gate(
op=clifford_command.op,
qubits=clifford_command.qubits,
)
pauli_check_circuit.add_barrier(command.args + [control_qubit])
# Add the end check.
stabiliser_circuit = end_stabiliser.get_control_circuit(
control_qubit=control_qubit
)
pauli_check_circuit.append(
circuit=stabiliser_circuit,
)
pauli_check_circuit.H(
control_qubit,
opgroup="ancilla superposition",
)
pauli_check_circuit.add_barrier(command.args + [control_qubit])
measure_bit = Bit(
name="ancilla_measure",
index=control_qubit.index,
)
postselect_bits.add(measure_bit)
pauli_check_circuit.add_bit(id=measure_bit)
pauli_check_circuit.Measure(
qubit=control_qubit,
bit=measure_bit,
)
return pauli_check_circuit, postselect_bits
@staticmethod
def _decompose_clifford_subcircuit_box(clifford_subcircuit_box: Command) -> Circuit:
"""Decompose command by extracting circuit and relabelling qubits to
match those of the command.
:param clifford_subcircuit_box: Command to decompose.
:return: Decomposed command.
"""
clifford_subcircuit = cast(CircBox, clifford_subcircuit_box.op).get_circuit()
qubit_map = {
cast(UnitID, q_subcirc): q_orig
for q_subcirc, q_orig in zip(
clifford_subcircuit.qubits, clifford_subcircuit_box.args
)
}
clifford_subcircuit.rename_units(qubit_map)
return clifford_subcircuit
class DeterministicZPauliSampler(PauliSampler):
"""Deterministic sampler, always returning Z Pauli string."""
def sample(self, circ: Circuit) -> List[QermitPauli]:
"""Return Z Pauli string of length equal to the circuit.
:param circ: Circuit to sample Pauli for.
:return: Z Pauli string of length equal to the circuit.
"""
return [
QermitPauli(
QubitPauliTensor(
string=QubitPauliString(
map={qubit: Pauli.Z for qubit in circ.qubits}
),
coeff=1,
)
)
]
class DeterministicXPauliSampler(PauliSampler):
"""Deterministic sampler, always returning X Pauli string."""
def sample(self, circ: Circuit) -> List[QermitPauli]:
"""Return X Pauli string of length equal to the circuit.
:param circ: Circuit to sample Pauli for.
:return: X Pauli string of length equal to the circuit.
"""
return [
QermitPauli(
QubitPauliTensor(
string=QubitPauliString(
map={qubit: Pauli.X for qubit in circ.qubits}
),
coeff=1,
)
)
]
[docs]
class RandomPauliSampler(PauliSampler):
"""Sampler returning random Pauli of appropriate length."""
def __init__(
self, n_checks: int, rng: Generator = numpy.random.default_rng()
) -> None:
"""
:param n_checks: The number of checks to sample
:param rng: Randomness generator,
defaults to numpy.random.default_rng()
"""
self.rng = rng
self.n_checks = n_checks
[docs]
def sample(
self,
circ: Circuit,
) -> List[QermitPauli]:
"""Sample random Pauli of length equal to the size of the circuit.
:param circ: Circuit to sample Pauli check for.
:return: Random Pauli of length equal to the size of the circuit.
"""
# TODO: Make sure sampling is done without replacement
stabiliser_list: List[QermitPauli] = []
while len(stabiliser_list) < self.n_checks:
qpt = QubitPauliTensor(
string=QubitPauliString(
map={
qubit: self.rng.choice(
numpy.array([Pauli.X, Pauli.Y, Pauli.Z, Pauli.I])
)
for qubit in circ.qubits
}
),
coeff=1,
)
if qpt != QubitPauliTensor():
stabiliser_list.append(QermitPauli(qpt))
return stabiliser_list
[docs]
class OptimalPauliSampler(PauliSampler):
"""
Samples pauli check based on a noise model. Simulates the noise models
action on clifford subcircuits in order to select checks.
"""
def __init__(self, noise_model: NoiseModel, n_checks: int) -> None:
"""
:param noise_model: The noise model to optimally pick pauli
checks for.
:param n_checks: The number of checks to sample.
"""
self.noise_model = noise_model
self.n_checks = n_checks
[docs]
def sample(
self,
circ: Circuit,
) -> List[QermitPauli]:
"""Samples checks for the given circuit.
:param circ: The circuit to sample checks for.
:return: Optimal Pauli checks.
"""
# TODO: assert that the registers match in this case
error_counter = self.noise_model.get_effective_pre_error_distribution(
cliff_circ=circ,
)
# print("effective error distribution", error_counter.distribution)
total_commute_prob = 0.0
total_n_pauli = 0
# smallest_commute_prob stores the proportion of shots which will
# still have errors.
smallest_commute_prob = 1.0
# TODO: There is probably a better way to search through this space.
# Here are some ideas:
# - It's better to prioritise checks that require fewer gates.
# Here I am checking I last as it requires the fewest gates.
# However note that IYY is checked after YII so IYY may be
# picked even though YII is lighter in the case that they
# have the same probability.
# - It may be redundant to check Pauli.I? If a string is selected
# with equal probability it may be worth it though.
# - Eventually we may have to select Pauli strings at random,
# but i'm not sure at what size that will be necessary.
for pauli_string_list in combinations(
product([Pauli.Y, Pauli.X, Pauli.Z, Pauli.I], repeat=circ.n_qubits),
self.n_checks,
):
if tuple([Pauli.I] * circ.n_qubits) in pauli_string_list:
continue
qubit_pauli_string_list = [
QubitPauliString(qubits=circ.qubits, paulis=pauli_string)
for pauli_string in pauli_string_list
]
commute_prob = 0.0
for error, prob in error_counter.distribution.items():
if all(
error.commutes_with(qubit_pauli_string)
for qubit_pauli_string in qubit_pauli_string_list
):
commute_prob += prob
# print(pauli_string_list, commute_prob)
if smallest_commute_prob >= commute_prob:
smallest_commute_prob = commute_prob
smallest_commute_prob_pauli_list = qubit_pauli_string_list
total_commute_prob += commute_prob
total_n_pauli += 1
# average_commute_prob = total_commute_prob / total_n_pauli
# print("smallest_commute_prob_pauli_list", smallest_commute_prob_pauli_list)
# print("smallest_commute_prob", smallest_commute_prob)
# print("average commute_prob", average_commute_prob)
# if (average_commute_prob == 0) or (
# abs(1 - (smallest_commute_prob / average_commute_prob)) < 0.1
# ):
# warnings.warn(
# "The smallest commute probability is close to the average. "
# + "Random check sampling will probably work just as well."
# )
return [
QermitPauli(QubitPauliTensor(string=smallest_commute_prob_pauli, coeff=1))
for smallest_commute_prob_pauli in smallest_commute_prob_pauli_list
]