# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Quantum category
================
Lambeq's internal representation of the quantum category. This work is
based on DisCoPy (https://discopy.org/) which is released under the
BSD 3-Clause 'New' or 'Revised' License.
Notes
-----
In lambeq, gates are represented as the transpose of their matrix
according to the standard convention in quantum computing. This makes
composition of gates using the tensornetwork library easier.
"""
from __future__ import annotations
from collections.abc import Callable
from dataclasses import dataclass, field, replace
from functools import partial
from typing import cast
import numpy as np
import tensornetwork as tn
from typing_extensions import Any, Self
from lambeq.backend import grammar, tensor
from lambeq.backend.numerical_backend import backend, get_backend
quantum = grammar.Category('quantum')
[docs]
@quantum
class Ty(tensor.Dim):
"""A type in the quantum category."""
[docs]
def __init__(self,
name: str | None = None,
objects: list[Self] | None = None):
"""Initialise a type in the quantum category.
Parameters
----------
name : str, optional
The name of the type, by default None
objects : list[Ty], optional
The objects defining a complex type, by default None
"""
if objects:
super().__init__(objects=objects)
self.name = None
self.label = None
else:
if name is None:
super().__init__()
else:
super().__init__(2)
self.label = name
def _repr_rec(self) -> str:
if self.is_empty:
return ''
elif self.is_atomic:
return f'{self.label}'
else:
return ' @ '.join(d._repr_rec() for d in self.objects)
def __str__(self) -> str:
return self.label if self.label else ''
def __repr__(self) -> str:
return f'Ty({self._repr_rec()})'
def __hash__(self) -> int:
return hash(repr(self))
def __eq__(self, other):
return (self.label == other.label
and self.name == other.name
and self.objects == other.objects)
qubit = Ty('qubit')
bit = Ty('bit')
[docs]
@quantum
class Box(tensor.Box):
"""A box in the quantum category."""
name: str
dom: Ty
cod: Ty
data: float | np.ndarray | None
z: int
is_mixed: bool
self_adjoint: bool
[docs]
def __init__(self,
name: str,
dom: Ty,
cod: Ty,
data: float | np.ndarray | None = None,
z: int = 0,
is_mixed: bool = False,
self_adjoint: bool = False):
"""Initialise a box in the quantum category.
Parameters
----------
name : str
Name of the box.
dom : Ty
Domain of the box.
cod : Ty
Codomain of the box.
data : float | np.ndarray, optional
Array defining the tensor of the box, by default None
z : int, optional
The winding number, by default 0
is_mixed : bool, optional
Whether the box is mixed, by default False
self_adjoint : bool, optional
Whether the box is self-adjoint, by default False
"""
self.name = name
self.dom = dom
self.cod = cod
self.data = data
self.z = z
self.is_mixed = is_mixed
self.self_adjoint = self_adjoint
@property
def is_classical(self) -> bool:
return set(self.dom @ self.cod) == {bit}
[docs]
def dagger(self) -> Daggered | Box:
"""Return the dagger of the box."""
if self.self_adjoint:
return self
return Daggered(self)
def __eq__(self, other):
return (self.name == other.name
and self.dom == other.dom
and self.cod == other.cod
and np.equal(self.data, other.data).all())
def __hash__(self) -> int:
return super().__hash__()
[docs]
@dataclass
@quantum
class Layer(tensor.Layer):
"""A Layer in a quantum Diagram.
Parameters
----------
box : Box
The box of the layer.
left : Ty
The wire type to the left of the box.
right : Ty
The wire type to the right of the box.
"""
left: Ty
box: Box
right: Ty
[docs]
@dataclass
@quantum
class Diagram(tensor.Diagram):
"""A diagram in the quantum category.
Parameters
----------
dom : Ty
The type of the input wires.
cod : Ty
The type of the output wires.
layers : list[Layer]
The layers of the diagram.
"""
dom: Ty
cod: Ty
layers: list[Layer] # type: ignore[assignment]
def __getattr__(self, name: str) -> Any:
try:
gate = GATES[name]
if callable(gate):
return partial(self.apply_parametrized_gate, gate)
return partial(self.apply_gate, gate) # type: ignore[arg-type]
except KeyError:
return super().__getattr__(name) # type: ignore[misc]
[docs]
def apply_parametrized_gate(self,
gate: Callable[[float], Parametrized],
param: float,
*qubits: int) -> Self:
return self.apply_gate(gate(param), *qubits)
[docs]
def apply_gate(self, gate: Box, *qubits: int) -> Self:
if isinstance(gate, Controlled):
min_idx = min(qubits)
final_gate: Box
if isinstance(gate.controlled, Controlled):
assert len(qubits) == 3
atomic = gate.controlled.controlled
dist1 = qubits[2] - qubits[0]
dist2 = qubits[2] - qubits[1]
if dist1 * dist2 < 0: # sign flip
final_gate = Controlled(Controlled(atomic, dist1), dist2)
else:
dists = np.array([dist1, dist2])
idx = np.argmin(np.abs(dists)), np.argmax(np.abs(dists))
final_gate = Controlled(Controlled(atomic, dists[idx[0]]),
dists[idx[1]]-dists[idx[0]])
else:
# Singly controlled
assert len(qubits) == 2
dist = qubits[1] - qubits[0]
final_gate = Controlled(gate.controlled, dist)
return self.then_at(final_gate, min_idx)
else:
assert len(qubits) == len(gate.dom)
return self.then_at(gate, min(qubits))
@property
def is_mixed(self) -> bool:
"""Whether the diagram is mixed.
A diagram is mixed if it contains a mixed box or if it has both
classical and quantum wires.
"""
dom_n_cod = self.dom @ self.cod
mixed_boundary = bit in dom_n_cod and qubit in dom_n_cod
return mixed_boundary or any(box.is_mixed for box in self.boxes)
[docs]
def eval(self,
*others,
backend=None,
mixed=False,
contractor=tn.contractors.auto,
**params):
"""Evaluate the circuit represented by the diagram.
Be aware that this method is only suitable for small circuits with
a small number of qubits (depending on hardware resources).
Parameters
----------
others : :class:`lambeq.backend.quantum.Diagram`
Other circuits to process in batch if backend is set to tket.
backend : pytket.Backend, optional
Backend on which to run the circuit, if none then we apply
tensor contraction.
mixed : bool, optional
Whether the circuit is mixed, by default False
contractor : Callable, optional
The contractor to use, by default tn.contractors.auto
Returns
-------
np.ndarray or list of np.ndarray
The result of the circuit simulation.
"""
if backend is None:
return contractor(*self.to_tn(mixed=mixed)).tensor
circuits = [circuit.to_tk() for circuit in (self, ) + others]
results, counts = [], circuits[0].get_counts(
*circuits[1:], backend=backend, **params)
for i, circuit in enumerate(circuits):
n_bits = len(circuit.post_processing.dom)
result = np.zeros((n_bits * (2, )))
for bitstring, count in counts[i].items():
result[bitstring] = count
if circuit.post_processing:
post_result = circuit.post_processing.eval().astype(float)
if result.shape and post_result.shape:
result = np.tensordot(result, post_result, -1)
else:
result * post_result
results.append(result)
return results if len(results) > 1 else results[0]
[docs]
def init_and_discard(self):
"""Return circuit with empty domain and only bits as codomain. """
circuit = self
if circuit.dom:
init = Id().tensor(*(Ket(0) if x == qubit else Bit(0)
for x in circuit.dom))
circuit = init >> circuit
if circuit.cod != bit ** len(circuit.cod):
discards = Id().tensor(*(
Discard() if x == qubit
else Id(bit) for x in circuit.cod))
circuit = circuit >> discards
return circuit
[docs]
def to_tk(self):
"""Export to t|ket>.
Returns
-------
tk_circuit : lambeq.backend.converters.tk.Circuit
A :class:`lambeq.backend.converters.tk.Circuit`.
Note
----
* No measurements are performed.
* SWAP gates are treated as logical swaps.
* If the circuit contains scalars or a :class:`Bra`,
then :code:`tk_circuit` will hold attributes
:code:`post_selection` and :code:`scalar`.
Examples
--------
>>> from lambeq.backend.quantum import *
>>> bell_test = H @ Id(qubit) >> CX >> Measure() @ Measure()
>>> bell_test.to_tk()
tk.Circuit(2, 2).H(0).CX(0, 1).Measure(0, 0).Measure(1, 1)
>>> circuit0 = (Sqrt(2) @ H @ Rx(0.5) >> CX >>
... Measure() @ Discard())
>>> circuit0.to_tk()
tk.Circuit(2, 1).H(0).Rx(1.0, 1).CX(0, 1).Measure(0, 0).scale(2)
>>> circuit1 = Ket(1, 0) >> CX >> Id(qubit) @ Ket(0) @ Id(qubit)
>>> circuit1.to_tk()
tk.Circuit(3).X(0).CX(0, 2)
>>> circuit2 = X @ Id(qubit ** 2) \\
... >> Id(qubit) @ SWAP >> CX @ Id(qubit) >> Id(qubit) @ SWAP
>>> circuit2.to_tk()
tk.Circuit(3).X(0).CX(0, 2)
>>> circuit3 = Ket(0, 0)\\
... >> H @ Id(qubit)\\
... >> CX\\
... >> Id(qubit) @ Bra(0)
>>> print(repr(circuit3.to_tk()))
tk.Circuit(2, 1).H(0).CX(0, 1).Measure(1, 0).post_select({0: 0})
"""
from lambeq.backend.converters.tk import to_tk
return to_tk(self)
[docs]
def to_pennylane(self, probabilities=False, backend_config=None,
diff_method='best'):
"""
Export lambeq circuit to PennylaneCircuit.
Parameters
----------
probabilties : bool, default: False
If True, the PennylaneCircuit will return the normalized
probabilties of measuring the computational basis states
when run. If False, it returns the unnormalized quantum
states in the computational basis.
backend_config : dict, default: None
A dictionary of PennyLane backend configration options,
including the provider (e.g. IBM or Honeywell), the device,
the number of shots, etc. See the `PennyLane plugin
documentation <https://pennylane.ai/plugins/>`_
for more details.
diff_method : str, default: "best"
The differentiation method to use to obtain gradients for the
PennyLane circuit. Some gradient methods are only compatible
with simulated circuits. See the `PennyLane documentation
<https://docs.pennylane.ai/en/stable/introduction/interfaces.html>`_
for more details.
Returns
-------
:class:`lambeq.backend.pennylane.PennylaneCircuit`
"""
from lambeq.backend.pennylane import to_pennylane
return to_pennylane(self, probabilities=probabilities,
backend_config=backend_config,
diff_method=diff_method)
[docs]
def to_tn(self, mixed=False):
"""Send a diagram to a mixed :code:`tensornetwork`.
Parameters
----------
mixed : bool, default: False
Whether to perform mixed (also known as density matrix)
evaluation of the circuit.
Returns
-------
nodes : :class:`tensornetwork.Node`
Nodes of the network.
output_edge_order : list of :class:`tensornetwork.Edge`
Output edges of the network.
"""
if not mixed and not self.is_mixed:
return super().to_tn(dtype=complex)
diag = Id(self.dom)
for left, box, right in self.layers:
subdiag = box
if hasattr(box, 'decompose'):
subdiag = box.decompose()
diag >>= Id(left) @ subdiag @ Id(right)
c_nodes = [tn.CopyNode(2, 2, f'c_input_{i}', dtype=complex)
for i in range(list(diag.dom).count(bit))]
q_nodes1 = [tn.CopyNode(2, 2, f'q1_input_{i}', dtype=complex)
for i in range(list(diag.dom).count(qubit))]
q_nodes2 = [tn.CopyNode(2, 2, f'q2_input_{i}', dtype=complex)
for i in range(list(diag.dom).count(qubit))]
inputs = [n[0] for n in c_nodes + q_nodes1 + q_nodes2]
c_scan = [n[1] for n in c_nodes]
q_scan1 = [n[1] for n in q_nodes1]
q_scan2 = [n[1] for n in q_nodes2]
nodes = c_nodes + q_nodes1 + q_nodes2
for left, box, _ in diag.layers:
c_offset = list(left).count(bit)
q_offset = list(left).count(qubit)
if isinstance(box, Swap) and box.is_classical:
c_scan[q_offset], c_scan[q_offset + 1] = (c_scan[q_offset + 1],
c_scan[q_offset])
elif isinstance(box, Discard):
tn.connect(q_scan1[q_offset], q_scan2[q_offset])
del q_scan1[q_offset]
del q_scan2[q_offset]
elif box.is_mixed:
if isinstance(box, (Measure, Encode)):
node = tn.CopyNode(3, 2, 'cq_' + str(box), dtype=complex)
elif isinstance(box, (MixedState)):
node = tn.CopyNode(2, 2, 'cq_' + str(box), dtype=complex)
else:
node = tn.Node(box.data + 0j, 'cq_' + str(box))
c_dom = list(box.dom).count(bit)
q_dom = list(box.dom).count(qubit)
c_cod = list(box.cod).count(bit)
q_cod = list(box.cod).count(qubit)
for i in range(c_dom):
tn.connect(c_scan[c_offset + i], node[i])
for i in range(q_dom):
tn.connect(q_scan1[q_offset + i], node[c_dom + i])
tn.connect(q_scan2[q_offset + i], node[c_dom + q_dom + i])
cq_dom = c_dom + 2 * q_dom
c_edges = node[cq_dom: cq_dom + c_cod]
q_edges1 = node[cq_dom + c_cod: cq_dom + c_cod + q_cod]
q_edges2 = node[cq_dom + c_cod + q_cod:]
c_scan[c_offset:c_offset + c_dom] = c_edges
q_scan1[q_offset:q_offset + q_dom] = q_edges1
q_scan2[q_offset:q_offset + q_dom] = q_edges2
nodes.append(node)
else:
# Purely quantum box
if isinstance(box, Swap):
for scan in (q_scan1, q_scan2):
(scan[q_offset],
scan[q_offset + 1]) = (scan[q_offset + 1],
scan[q_offset])
else:
utensor = box.array
node1 = tn.Node(utensor + 0j, 'q1_' + str(box))
with backend() as np:
node2 = tn.Node(np.conj(utensor) + 0j,
'q2_' + str(box))
for i in range(len(box.dom)):
tn.connect(q_scan1[q_offset + i], node1[i])
tn.connect(q_scan2[q_offset + i], node2[i])
q_scan1[q_offset:q_offset
+ len(box.dom)] = node1[len(box.dom):]
q_scan2[q_offset:q_offset
+ len(box.dom)] = node2[len(box.dom):]
nodes.extend([node1, node2])
outputs = c_scan + q_scan1 + q_scan2
return nodes, inputs + outputs
__hash__: Callable[[], int] = tensor.Diagram.__hash__
[docs]
class SelfConjugate(Box):
"""A self-conjugate box is equal to its own conjugate."""
[docs]
def rotate(self, z):
return self
[docs]
class AntiConjugate(Box):
"""An anti-conjugate box is equal to the conjugate of its conjugate.
"""
[docs]
def rotate(self, z):
if z % 2 == 0:
return self
return self.dagger()
[docs]
@Diagram.register_special_box('cap')
def generate_cap(left: Ty, right: Ty, is_reversed=False) -> Diagram:
"""Generate a cap diagram.
Parameters
----------
left : Ty
The left type of the cap.
right : Ty
The right type of the cap.
is_reversed : bool, optional
Unused, by default False
Returns
-------
Diagram
The cap diagram.
"""
assert left == right
atomic_cap = Ket(0) @ Ket(0) >> H @ Sqrt(2) @ qubit >> Controlled(X)
d = Id()
for i in range(len(left)):
d = d.then_at(atomic_cap, i)
return d
[docs]
@Diagram.register_special_box('cup')
def generate_cup(left: Ty, right: Ty, is_reversed=False) -> Diagram:
"""Generate a cup diagram.
Parameters
----------
left : Ty
The left type of the cup.
right : Ty
The right type of the cup.
is_reversed : bool, optional
Unused, by default False
Returns
-------
Diagram
The cup diagram.
"""
assert left == right
atomic_cup = Controlled(X) >> H @ Sqrt(2) @ qubit >> Bra(0) @ Bra(0)
d = Id(left @ right)
for i in range(len(left)):
d = d.then_at(atomic_cup, len(left) - i - 1)
return d
[docs]
@Diagram.register_special_box('spider')
def generate_spider(type: Ty, n_legs_in: int, n_legs_out: int) -> Diagram:
i, o = n_legs_in, n_legs_out
if i == o == 1:
return Id(type)
if type == Ty():
return Id()
if type != qubit:
raise NotImplementedError('Multi-qubit spiders are not presently'
' supported.')
if (i, o) == (1, 0):
return cast(Diagram, Sqrt(2) @ H >> Bra(0))
if (i, o) == (2, 1):
return cast(Diagram, CX >> Id(qubit) @ Bra(0))
if o > i:
return generate_spider(type, o, i).dagger()
if o != 1:
return generate_spider(type, i, 1) >> generate_spider(type, 1, o)
if i % 2:
return (generate_spider(type, i - 1, 1) @ Id(type)
>> generate_spider(type, 2, 1))
half_spiders = generate_spider(type, i // 2, 1)
return half_spiders @ half_spiders >> generate_spider(type, 2, 1)
[docs]
@Diagram.register_special_box('swap')
class Swap(tensor.Swap, SelfConjugate, Box):
"""A swap box in the quantum category."""
type: Ty
n_legs_in: int
n_legs_out: int
name: str
dom: Ty
cod: Ty
z: int = 0
[docs]
def __init__(self, left: Ty, right: Ty):
"""Initialise a swap box.
Parameters
----------
left : Ty
The left type of the swap.
right : Ty
The right type of the swap.
"""
Box.__init__(self,
'SWAP',
left @ right,
right @ left,
np.array([[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]]))
tensor.Swap.__init__(self, left, right)
__hash__: Callable[[], int] = tensor.Swap.__hash__
__repr__: Callable[[], str] = tensor.Swap.__repr__
dagger = tensor.Swap.dagger
[docs]
def Id(ty: Ty | int | None = None) -> Diagram:
if isinstance(ty, int):
ty = qubit ** ty
return Diagram.id(ty)
[docs]
class Ket(SelfConjugate, Box):
"""A ket in the quantum category.
A ket is a box that initializes a qubit to a given state.
"""
def __new__(cls, *bitstring: int):
if len(bitstring) <= 1:
return super(Ket, cls).__new__(cls)
return Id().tensor(* [cls(bit) for bit in bitstring])
[docs]
def __init__(self, bit: int) -> None:
"""Initialise a ket box.
Parameters
----------
bit : int
The state of the qubit (either 0 or 1).
"""
assert bit in {0, 1}
self.bit = bit
super().__init__(str(bit), Ty(), qubit, np.eye(2)[bit].T)
[docs]
def dagger(self) -> Self:
return Bra(self.bit) # type: ignore[return-value]
[docs]
class Bra(SelfConjugate, Box):
"""A bra in the quantum category.
A bra is a box that measures a qubit in the computational basis and
post-selects on a given state.
"""
def __new__(cls, *bitstring: int):
if len(bitstring) <= 1:
return super(Bra, cls).__new__(cls)
return Id().tensor(* [cls(bit) for bit in bitstring])
[docs]
def __init__(self, bit: int):
"""Initialise a bra box.
Parameters
----------
bit : int
The state of the qubit to post-select on (either 0 or 1).
"""
assert bit in {0, 1}
self.bit = bit
super().__init__(str(bit), qubit, Ty(), np.eye(2)[bit])
[docs]
def dagger(self) -> Self:
return Ket(self.bit) # type: ignore[return-value]
[docs]
class Parametrized(Box):
"""A parametrized box in the quantum category.
A parametrized box is a unitary gate that can be parametrized by a
real number.
Parameters
----------
name : str
The name of the box.
dom : Ty
The domain of the box.
cod : Ty
The codomain of the box.
data : float
The parameterised unitary of the box.
is_mixed : bool, default: False
Whether the box is mixed
self_adjoint : bool, default: False
Whether the box is self-adjoint
"""
name: str
dom: Ty
cod: Ty
data: float
is_mixed: bool = False
self_adjoint: bool = False
[docs]
def lambdify(self, *symbols, **kwargs):
"""Return a lambda function that evaluates the box."""
from sympy import lambdify
data = lambdify(symbols, self.data, dict(kwargs, modules=np))
return lambda *xs: type(self)(data(*xs))
@property
def modules(self):
if self.free_symbols:
import sympy
return sympy
else:
return get_backend()
[docs]
class Rotation(Parametrized):
"""Single qubit gate defining a rotation around the bloch sphere."""
[docs]
def __init__(self, phase):
super().__init__(
f'{type(self).__name__}({phase})', qubit, qubit, phase)
@property
def phase(self) -> float:
return self.data
[docs]
def dagger(self) -> Self:
return type(self)(-self.data)
[docs]
class Rx(AntiConjugate, Rotation):
"""Single qubit gate defining a rotation aound the x-axis."""
@property
def array(self):
with backend() as np:
half_theta = np.pi * self.data
sin = self.modules.sin(half_theta)
cos = self.modules.cos(half_theta)
return np.array([[cos, -1j * sin], [-1j * sin, cos]])
[docs]
class Ry(SelfConjugate, Rotation):
"""Single qubit gate defining a rotation aound the y-axis."""
@property
def array(self):
with backend() as np:
half_theta = np.pi * self.data
sin = self.modules.sin(half_theta)
cos = self.modules.cos(half_theta)
return np.array([[cos, sin], [-sin, cos]])
[docs]
class Rz(AntiConjugate, Rotation):
"""Single qubit gate defining a rotation aound the z-axis."""
@property
def array(self):
with backend() as np:
half_theta = self.modules.pi * self.data
exp1 = np.e ** (-1j * half_theta)
exp2 = np.e ** (1j * half_theta)
return np.array([[exp1, 0], [0, exp2]])
[docs]
class Controlled(Parametrized):
"""A gate that applies a unitary controlled by a qubit's state."""
[docs]
def __init__(self, controlled: Box, distance=1):
"""Initialise a controlled box.
Parameters
----------
controlled : Box
The box to be controlled.
distance : int, optional
The distance between the control and the target, by default 1
"""
assert distance
self.distance = distance
self.controlled = controlled
width = len(controlled.dom) + abs(distance)
super().__init__(f'C{controlled}',
qubit ** width,
qubit ** width,
controlled.data,
controlled.is_mixed)
def __hash__(self) -> int:
return hash((self.controlled, self.distance))
def __setattr__(self, __name: str, __value: Any) -> None:
if __name == 'data':
self.controlled.data = __value
return super().__setattr__(__name, __value)
@property
def phase(self) -> float:
if isinstance(self.controlled, Rotation):
return self.controlled.phase
else:
raise AttributeError('Controlled gate has no phase.')
[docs]
def decompose(self) -> Diagram | Box:
"""Split a box (distance >1) into distance 1 box + swaps."""
if self.distance == 1:
return self
n_qubits = len(self.dom)
skipped_qbs = n_qubits - (1 + len(self.controlled.dom))
if self.distance > 0:
pattern = [0,
*range(skipped_qbs + 1, n_qubits),
*range(1, skipped_qbs + 1)]
else:
pattern = [n_qubits - 1, *range(n_qubits - 1)]
perm: Diagram = Diagram.permutation(self.dom, pattern)
diagram = (perm
>> type(self)(self.controlled) @ Id(qubit ** skipped_qbs)
>> perm.dagger())
return diagram
[docs]
def lambdify(self, *symbols, **kwargs):
"""Return a lambda function that evaluates the box."""
c_fn = self.controlled.lambdify(*symbols)
return lambda *xs: type(self)(c_fn(*xs), distance=self.distance)
@property
def array(self):
with backend() as np:
controlled, distance = self.controlled, self.distance
n_qubits = len(self.dom)
if distance == 1:
d = 1 << n_qubits - 1
part1 = np.array([[1, 0], [0, 0]])
part2 = np.array([[0, 0], [0, 1]])
array = (np.kron(part1, np.eye(d))
+ np.kron(part2,
np.array(controlled.array.reshape(d, d))))
else:
array = self.decompose().eval()
return array.reshape(*[2] * 2 * n_qubits)
[docs]
def dagger(self):
"""Return the dagger of the box."""
return Controlled(self.controlled.dagger(), self.distance)
[docs]
def rotate(self, z):
"""Conjugate the box."""
if z % 2 == 0:
return self
return Controlled(self.controlled.rotate(z), -self.distance)
[docs]
class MixedState(SelfConjugate):
"""A mixed state is a state with a density matrix proportional to the
identity matrix."""
[docs]
def __init__(self):
super().__init__('MixedState', Ty(), qubit, is_mixed=True)
[docs]
def dagger(self):
return Discard()
[docs]
class Discard(SelfConjugate):
"""Discard a qubit. This is a measurement without post-selection."""
[docs]
def __init__(self):
super().__init__('Discard', qubit, Ty(), is_mixed=True)
[docs]
def dagger(self):
return MixedState()
[docs]
class Measure(SelfConjugate):
"""Measure a qubit and return a classical information bit."""
[docs]
def __init__(self):
super().__init__('Measure', qubit, bit, is_mixed=True)
[docs]
def dagger(self):
return Encode()
[docs]
class Encode(SelfConjugate):
"""Encode a classical information bit into a qubit."""
[docs]
def __init__(self):
super().__init__('Encode', bit, qubit, is_mixed=True)
[docs]
def dagger(self):
return Measure()
[docs]
@dataclass
class Scalar(Box):
"""A scalar amplifies a quantum state by a given factor."""
data: float | np.ndarray
name: str = field(init=False)
dom: Ty = field(default=Ty(), init=False)
cod: Ty = field(default=Ty(), init=False)
is_mixed: bool = field(default=False, init=False)
self_adjoint: bool = field(default=False, init=False)
z: int = field(default=0, init=False)
def __post_init__(self) -> None:
self.name = f'{self.data:.3f}'
@property
def array(self):
with backend() as np:
return np.array(self.data)
__hash__: Callable[[Box], int] = Box.__hash__
[docs]
def dagger(self):
return replace(self, data=self.data.conjugate())
[docs]
@dataclass
class Sqrt(Scalar):
"""A Square root."""
data: float | np.ndarray
name: str = field(init=False)
dom: Ty = field(default=Ty(), init=False)
cod: Ty = field(default=Ty(), init=False)
is_mixed: bool = field(default=False, init=False)
self_adjoint: bool = field(default=False, init=False)
z: int = field(default=0, init=False)
def __post_init__(self) -> None:
self.name = f'√({self.data})'
@property
def array(self):
with backend() as np:
return np.array(self.data ** .5)
__hash__: Callable[[], int] = Scalar.__hash__
[docs]
def dagger(self):
return replace(self, data=np.conjugate(self.data))
[docs]
@dataclass
class Daggered(tensor.Daggered, Box):
"""A daggered gate reverses the box's effect on a quantum state.
Parameters
----------
box : Box
The box to be daggered.
"""
box: Box
name: str = field(init=False)
dom: Ty = field(init=False)
cod: Ty = field(init=False)
data: float | np.ndarray | None = field(default=None, init=False)
is_mixed: bool = field(default=False, init=False)
self_adjoint: bool = field(default=False, init=False)
z: int = field(init=False)
def __post_init__(self) -> None:
self.name = self.box.name + '†'
self.dom = self.box.cod
self.cod = self.box.dom
self.data = self.box.data
self.z = 0
self.is_mixed = self.box.is_mixed
def __setattr__(self, __name: str, __value: Any) -> None:
if __name == 'data':
self.box.data = __value
return super().__setattr__(__name, __value)
[docs]
def dagger(self) -> Box:
return self.box
__hash__: Callable[[Box], int] = Box.__hash__
__repr__: Callable[[Box], str] = Box.__repr__
[docs]
class Bit(Box):
"""Classical state for a given bit."""
def __new__(cls, *bitstring: int):
if len(bitstring) <= 1:
return super(Bit, cls).__new__(cls)
return Id().tensor(* [cls(bit) for bit in bitstring])
[docs]
def __init__(self, bit_value: int) -> None:
"""Initialise a ket box.
Parameters
----------
bit_value : int
The state of the qubit (either 0 or 1).
"""
assert bit_value in {0, 1}
self.bit = bit_value
super().__init__(str(bit_value), Ty(), bit, np.eye(2)[bit_value].T)
SWAP = Swap(qubit, qubit)
H = SelfConjugate('H', qubit, qubit,
(2 ** -0.5) * np.array([[1, 1], [1, -1]]), self_adjoint=True)
S = Box('S', qubit, qubit, np.array([[1, 0], [0, 1j]]))
T = Box('T', qubit, qubit, np.array([[1, 0], [0, np.e ** (1j * np.pi / 4)]]))
X = SelfConjugate('X', qubit, qubit,
np.array([[0, 1], [1, 0]]), self_adjoint=True)
Y = Box('Y', qubit, qubit, np.array([[0, 1j], [-1j, 0]]), self_adjoint=True)
Z = SelfConjugate('Z', qubit, qubit,
np.array([[1, 0], [0, -1]]), self_adjoint=True)
CX = Controlled(X)
CY = Controlled(Y)
CZ = Controlled(Z)
CCX = Controlled(CX)
CCZ = Controlled(CZ)
CRx = lambda phi, distance = 1: Controlled(Rx(phi), distance) # noqa: E731
CRy = lambda phi, distance = 1: Controlled(Ry(phi), distance) # noqa: E731
CRz = lambda phi, distance = 1: Controlled(Rz(phi), distance) # noqa: E731
GATES = {
'SWAP': SWAP,
'H': H,
'S': S,
'T': T,
'X': X,
'Y': Y,
'Z': Z,
'CZ': CZ,
'CY': CY,
'CX': CX,
'CCX': CCX,
'CCZ': CCZ,
'Rx': Rx,
'Ry': Ry,
'Rz': Rz,
'CRx': CRx,
'CRy': CRy,
'CRz': CRz,
}