Source code for lambeq.backend.quantum

# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Quantum category
================
Lambeq's internal representation of the quantum category. This work is
based on DisCoPy (https://discopy.org/) which is released under the
BSD 3-Clause 'New' or 'Revised' License.

Notes
-----

In lambeq, gates are represented as the transpose of their matrix
according to the standard convention in quantum computing. This makes
composition of gates using the tensornetwork library easier.

"""

from __future__ import annotations

from collections.abc import Callable
from dataclasses import dataclass, field, replace
from functools import partial
from typing import cast

import numpy as np
import tensornetwork as tn
from typing_extensions import Any, Self

from lambeq.backend import grammar, tensor
from lambeq.backend.numerical_backend import backend, get_backend


quantum = grammar.Category('quantum')


[docs] @quantum class Ty(tensor.Dim): """A type in the quantum category."""
[docs] def __init__(self, name: str | None = None, objects: list[Self] | None = None): """Initialise a type in the quantum category. Parameters ---------- name : str, optional The name of the type, by default None objects : list[Ty], optional The objects defining a complex type, by default None """ if objects: super().__init__(objects=objects) self.name = None self.label = None else: if name is None: super().__init__() else: super().__init__(2) self.label = name
def _repr_rec(self) -> str: if self.is_empty: return '' elif self.is_atomic: return f'{self.label}' else: return ' @ '.join(d._repr_rec() for d in self.objects) def __str__(self) -> str: return self.label if self.label else '' def __repr__(self) -> str: return f'Ty({self._repr_rec()})' def __hash__(self) -> int: return hash(repr(self)) def __eq__(self, other): return (self.label == other.label and self.name == other.name and self.objects == other.objects)
qubit = Ty('qubit') bit = Ty('bit')
[docs] @quantum class Box(tensor.Box): """A box in the quantum category.""" name: str dom: Ty cod: Ty data: float | np.ndarray | None z: int is_mixed: bool self_adjoint: bool
[docs] def __init__(self, name: str, dom: Ty, cod: Ty, data: float | np.ndarray | None = None, z: int = 0, is_mixed: bool = False, self_adjoint: bool = False): """Initialise a box in the quantum category. Parameters ---------- name : str Name of the box. dom : Ty Domain of the box. cod : Ty Codomain of the box. data : float | np.ndarray, optional Array defining the tensor of the box, by default None z : int, optional The winding number, by default 0 is_mixed : bool, optional Whether the box is mixed, by default False self_adjoint : bool, optional Whether the box is self-adjoint, by default False """ self.name = name self.dom = dom self.cod = cod self.data = data self.z = z self.is_mixed = is_mixed self.self_adjoint = self_adjoint
@property def is_classical(self) -> bool: return set(self.dom @ self.cod) == {bit}
[docs] def dagger(self) -> Daggered | Box: """Return the dagger of the box.""" if self.self_adjoint: return self return Daggered(self)
def __eq__(self, other): return (self.name == other.name and self.dom == other.dom and self.cod == other.cod and np.equal(self.data, other.data).all()) def __hash__(self) -> int: return super().__hash__()
[docs] @dataclass @quantum class Layer(tensor.Layer): """A Layer in a quantum Diagram. Parameters ---------- box : Box The box of the layer. left : Ty The wire type to the left of the box. right : Ty The wire type to the right of the box. """ left: Ty box: Box right: Ty
[docs] @dataclass @quantum class Diagram(tensor.Diagram): """A diagram in the quantum category. Parameters ---------- dom : Ty The type of the input wires. cod : Ty The type of the output wires. layers : list[Layer] The layers of the diagram. """ dom: Ty cod: Ty layers: list[Layer] # type: ignore[assignment] def __getattr__(self, name: str) -> Any: try: gate = GATES[name] if callable(gate): return partial(self.apply_parametrized_gate, gate) return partial(self.apply_gate, gate) # type: ignore[arg-type] except KeyError: return super().__getattr__(name) # type: ignore[misc]
[docs] def apply_parametrized_gate(self, gate: Callable[[float], Parametrized], param: float, *qubits: int) -> Self: return self.apply_gate(gate(param), *qubits)
[docs] def apply_gate(self, gate: Box, *qubits: int) -> Self: if isinstance(gate, Controlled): min_idx = min(qubits) final_gate: Box if isinstance(gate.controlled, Controlled): assert len(qubits) == 3 atomic = gate.controlled.controlled dist1 = qubits[2] - qubits[0] dist2 = qubits[2] - qubits[1] if dist1 * dist2 < 0: # sign flip final_gate = Controlled(Controlled(atomic, dist1), dist2) else: dists = np.array([dist1, dist2]) idx = np.argmin(np.abs(dists)), np.argmax(np.abs(dists)) final_gate = Controlled(Controlled(atomic, dists[idx[0]]), dists[idx[1]]-dists[idx[0]]) else: # Singly controlled assert len(qubits) == 2 dist = qubits[1] - qubits[0] final_gate = Controlled(gate.controlled, dist) return self.then_at(final_gate, min_idx) else: assert len(qubits) == len(gate.dom) return self.then_at(gate, min(qubits))
@property def is_mixed(self) -> bool: """Whether the diagram is mixed. A diagram is mixed if it contains a mixed box or if it has both classical and quantum wires. """ dom_n_cod = self.dom @ self.cod mixed_boundary = bit in dom_n_cod and qubit in dom_n_cod return mixed_boundary or any(box.is_mixed for box in self.boxes)
[docs] def eval(self, *others, backend=None, mixed=False, contractor=tn.contractors.auto, **params): """Evaluate the circuit represented by the diagram. Be aware that this method is only suitable for small circuits with a small number of qubits (depending on hardware resources). Parameters ---------- others : :class:`lambeq.backend.quantum.Diagram` Other circuits to process in batch if backend is set to tket. backend : pytket.Backend, optional Backend on which to run the circuit, if none then we apply tensor contraction. mixed : bool, optional Whether the circuit is mixed, by default False contractor : Callable, optional The contractor to use, by default tn.contractors.auto Returns ------- np.ndarray or list of np.ndarray The result of the circuit simulation. """ if backend is None: return contractor(*self.to_tn(mixed=mixed)).tensor circuits = [circuit.to_tk() for circuit in (self, ) + others] results, counts = [], circuits[0].get_counts( *circuits[1:], backend=backend, **params) for i, circuit in enumerate(circuits): n_bits = len(circuit.post_processing.dom) result = np.zeros((n_bits * (2, ))) for bitstring, count in counts[i].items(): result[bitstring] = count if circuit.post_processing: post_result = circuit.post_processing.eval().astype(float) if result.shape and post_result.shape: result = np.tensordot(result, post_result, -1) else: result * post_result results.append(result) return results if len(results) > 1 else results[0]
[docs] def init_and_discard(self): """Return circuit with empty domain and only bits as codomain. """ circuit = self if circuit.dom: init = Id().tensor(*(Ket(0) if x == qubit else Bit(0) for x in circuit.dom)) circuit = init >> circuit if circuit.cod != bit ** len(circuit.cod): discards = Id().tensor(*( Discard() if x == qubit else Id(bit) for x in circuit.cod)) circuit = circuit >> discards return circuit
[docs] def to_tk(self): """Export to t|ket>. Returns ------- tk_circuit : lambeq.backend.converters.tk.Circuit A :class:`lambeq.backend.converters.tk.Circuit`. Note ---- * No measurements are performed. * SWAP gates are treated as logical swaps. * If the circuit contains scalars or a :class:`Bra`, then :code:`tk_circuit` will hold attributes :code:`post_selection` and :code:`scalar`. Examples -------- >>> from lambeq.backend.quantum import * >>> bell_test = H @ Id(qubit) >> CX >> Measure() @ Measure() >>> bell_test.to_tk() tk.Circuit(2, 2).H(0).CX(0, 1).Measure(0, 0).Measure(1, 1) >>> circuit0 = (Sqrt(2) @ H @ Rx(0.5) >> CX >> ... Measure() @ Discard()) >>> circuit0.to_tk() tk.Circuit(2, 1).H(0).Rx(1.0, 1).CX(0, 1).Measure(0, 0).scale(2) >>> circuit1 = Ket(1, 0) >> CX >> Id(qubit) @ Ket(0) @ Id(qubit) >>> circuit1.to_tk() tk.Circuit(3).X(0).CX(0, 2) >>> circuit2 = X @ Id(qubit ** 2) \\ ... >> Id(qubit) @ SWAP >> CX @ Id(qubit) >> Id(qubit) @ SWAP >>> circuit2.to_tk() tk.Circuit(3).X(0).CX(0, 2) >>> circuit3 = Ket(0, 0)\\ ... >> H @ Id(qubit)\\ ... >> CX\\ ... >> Id(qubit) @ Bra(0) >>> print(repr(circuit3.to_tk())) tk.Circuit(2, 1).H(0).CX(0, 1).Measure(1, 0).post_select({0: 0}) """ from lambeq.backend.converters.tk import to_tk return to_tk(self)
[docs] def to_pennylane(self, probabilities=False, backend_config=None, diff_method='best'): """ Export lambeq circuit to PennylaneCircuit. Parameters ---------- probabilties : bool, default: False If True, the PennylaneCircuit will return the normalized probabilties of measuring the computational basis states when run. If False, it returns the unnormalized quantum states in the computational basis. backend_config : dict, default: None A dictionary of PennyLane backend configration options, including the provider (e.g. IBM or Honeywell), the device, the number of shots, etc. See the `PennyLane plugin documentation <https://pennylane.ai/plugins/>`_ for more details. diff_method : str, default: "best" The differentiation method to use to obtain gradients for the PennyLane circuit. Some gradient methods are only compatible with simulated circuits. See the `PennyLane documentation <https://docs.pennylane.ai/en/stable/introduction/interfaces.html>`_ for more details. Returns ------- :class:`lambeq.backend.pennylane.PennylaneCircuit` """ from lambeq.backend.pennylane import to_pennylane return to_pennylane(self, probabilities=probabilities, backend_config=backend_config, diff_method=diff_method)
[docs] def to_tn(self, mixed=False): """Send a diagram to a mixed :code:`tensornetwork`. Parameters ---------- mixed : bool, default: False Whether to perform mixed (also known as density matrix) evaluation of the circuit. Returns ------- nodes : :class:`tensornetwork.Node` Nodes of the network. output_edge_order : list of :class:`tensornetwork.Edge` Output edges of the network. """ if not mixed and not self.is_mixed: return super().to_tn(dtype=complex) diag = Id(self.dom) for left, box, right in self.layers: subdiag = box if hasattr(box, 'decompose'): subdiag = box.decompose() diag >>= Id(left) @ subdiag @ Id(right) c_nodes = [tn.CopyNode(2, 2, f'c_input_{i}', dtype=complex) for i in range(list(diag.dom).count(bit))] q_nodes1 = [tn.CopyNode(2, 2, f'q1_input_{i}', dtype=complex) for i in range(list(diag.dom).count(qubit))] q_nodes2 = [tn.CopyNode(2, 2, f'q2_input_{i}', dtype=complex) for i in range(list(diag.dom).count(qubit))] inputs = [n[0] for n in c_nodes + q_nodes1 + q_nodes2] c_scan = [n[1] for n in c_nodes] q_scan1 = [n[1] for n in q_nodes1] q_scan2 = [n[1] for n in q_nodes2] nodes = c_nodes + q_nodes1 + q_nodes2 for left, box, _ in diag.layers: c_offset = list(left).count(bit) q_offset = list(left).count(qubit) if isinstance(box, Swap) and box.is_classical: c_scan[q_offset], c_scan[q_offset + 1] = (c_scan[q_offset + 1], c_scan[q_offset]) elif isinstance(box, Discard): tn.connect(q_scan1[q_offset], q_scan2[q_offset]) del q_scan1[q_offset] del q_scan2[q_offset] elif box.is_mixed: if isinstance(box, (Measure, Encode)): node = tn.CopyNode(3, 2, 'cq_' + str(box), dtype=complex) elif isinstance(box, (MixedState)): node = tn.CopyNode(2, 2, 'cq_' + str(box), dtype=complex) else: node = tn.Node(box.data + 0j, 'cq_' + str(box)) c_dom = list(box.dom).count(bit) q_dom = list(box.dom).count(qubit) c_cod = list(box.cod).count(bit) q_cod = list(box.cod).count(qubit) for i in range(c_dom): tn.connect(c_scan[c_offset + i], node[i]) for i in range(q_dom): tn.connect(q_scan1[q_offset + i], node[c_dom + i]) tn.connect(q_scan2[q_offset + i], node[c_dom + q_dom + i]) cq_dom = c_dom + 2 * q_dom c_edges = node[cq_dom: cq_dom + c_cod] q_edges1 = node[cq_dom + c_cod: cq_dom + c_cod + q_cod] q_edges2 = node[cq_dom + c_cod + q_cod:] c_scan[c_offset:c_offset + c_dom] = c_edges q_scan1[q_offset:q_offset + q_dom] = q_edges1 q_scan2[q_offset:q_offset + q_dom] = q_edges2 nodes.append(node) else: # Purely quantum box if isinstance(box, Swap): for scan in (q_scan1, q_scan2): (scan[q_offset], scan[q_offset + 1]) = (scan[q_offset + 1], scan[q_offset]) else: utensor = box.array node1 = tn.Node(utensor + 0j, 'q1_' + str(box)) with backend() as np: node2 = tn.Node(np.conj(utensor) + 0j, 'q2_' + str(box)) for i in range(len(box.dom)): tn.connect(q_scan1[q_offset + i], node1[i]) tn.connect(q_scan2[q_offset + i], node2[i]) q_scan1[q_offset:q_offset + len(box.dom)] = node1[len(box.dom):] q_scan2[q_offset:q_offset + len(box.dom)] = node2[len(box.dom):] nodes.extend([node1, node2]) outputs = c_scan + q_scan1 + q_scan2 return nodes, inputs + outputs
__hash__: Callable[[], int] = tensor.Diagram.__hash__
[docs] class SelfConjugate(Box): """A self-conjugate box is equal to its own conjugate."""
[docs] def rotate(self, z): return self
[docs] class AntiConjugate(Box): """An anti-conjugate box is equal to the conjugate of its conjugate. """
[docs] def rotate(self, z): if z % 2 == 0: return self return self.dagger()
[docs] @Diagram.register_special_box('cap') def generate_cap(left: Ty, right: Ty, is_reversed=False) -> Diagram: """Generate a cap diagram. Parameters ---------- left : Ty The left type of the cap. right : Ty The right type of the cap. is_reversed : bool, optional Unused, by default False Returns ------- Diagram The cap diagram. """ assert left == right atomic_cap = Ket(0) @ Ket(0) >> H @ Sqrt(2) @ qubit >> Controlled(X) d = Id() for i in range(len(left)): d = d.then_at(atomic_cap, i) return d
[docs] @Diagram.register_special_box('cup') def generate_cup(left: Ty, right: Ty, is_reversed=False) -> Diagram: """Generate a cup diagram. Parameters ---------- left : Ty The left type of the cup. right : Ty The right type of the cup. is_reversed : bool, optional Unused, by default False Returns ------- Diagram The cup diagram. """ assert left == right atomic_cup = Controlled(X) >> H @ Sqrt(2) @ qubit >> Bra(0) @ Bra(0) d = Id(left @ right) for i in range(len(left)): d = d.then_at(atomic_cup, len(left) - i - 1) return d
[docs] @Diagram.register_special_box('spider') def generate_spider(type: Ty, n_legs_in: int, n_legs_out: int) -> Diagram: i, o = n_legs_in, n_legs_out if i == o == 1: return Id(type) if type == Ty(): return Id() if type != qubit: raise NotImplementedError('Multi-qubit spiders are not presently' ' supported.') if (i, o) == (1, 0): return cast(Diagram, Sqrt(2) @ H >> Bra(0)) if (i, o) == (2, 1): return cast(Diagram, CX >> Id(qubit) @ Bra(0)) if o > i: return generate_spider(type, o, i).dagger() if o != 1: return generate_spider(type, i, 1) >> generate_spider(type, 1, o) if i % 2: return (generate_spider(type, i - 1, 1) @ Id(type) >> generate_spider(type, 2, 1)) half_spiders = generate_spider(type, i // 2, 1) return half_spiders @ half_spiders >> generate_spider(type, 2, 1)
[docs] @Diagram.register_special_box('swap') class Swap(tensor.Swap, SelfConjugate, Box): """A swap box in the quantum category.""" type: Ty n_legs_in: int n_legs_out: int name: str dom: Ty cod: Ty z: int = 0
[docs] def __init__(self, left: Ty, right: Ty): """Initialise a swap box. Parameters ---------- left : Ty The left type of the swap. right : Ty The right type of the swap. """ Box.__init__(self, 'SWAP', left @ right, right @ left, np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])) tensor.Swap.__init__(self, left, right)
__hash__: Callable[[], int] = tensor.Swap.__hash__ __repr__: Callable[[], str] = tensor.Swap.__repr__ dagger = tensor.Swap.dagger
[docs] def Id(ty: Ty | int | None = None) -> Diagram: if isinstance(ty, int): ty = qubit ** ty return Diagram.id(ty)
[docs] class Ket(SelfConjugate, Box): """A ket in the quantum category. A ket is a box that initializes a qubit to a given state. """ def __new__(cls, *bitstring: int): if len(bitstring) <= 1: return super(Ket, cls).__new__(cls) return Id().tensor(* [cls(bit) for bit in bitstring])
[docs] def __init__(self, bit: int) -> None: """Initialise a ket box. Parameters ---------- bit : int The state of the qubit (either 0 or 1). """ assert bit in {0, 1} self.bit = bit super().__init__(str(bit), Ty(), qubit, np.eye(2)[bit].T)
[docs] def dagger(self) -> Self: return Bra(self.bit) # type: ignore[return-value]
[docs] class Bra(SelfConjugate, Box): """A bra in the quantum category. A bra is a box that measures a qubit in the computational basis and post-selects on a given state. """ def __new__(cls, *bitstring: int): if len(bitstring) <= 1: return super(Bra, cls).__new__(cls) return Id().tensor(* [cls(bit) for bit in bitstring])
[docs] def __init__(self, bit: int): """Initialise a bra box. Parameters ---------- bit : int The state of the qubit to post-select on (either 0 or 1). """ assert bit in {0, 1} self.bit = bit super().__init__(str(bit), qubit, Ty(), np.eye(2)[bit])
[docs] def dagger(self) -> Self: return Ket(self.bit) # type: ignore[return-value]
[docs] class Parametrized(Box): """A parametrized box in the quantum category. A parametrized box is a unitary gate that can be parametrized by a real number. Parameters ---------- name : str The name of the box. dom : Ty The domain of the box. cod : Ty The codomain of the box. data : float The parameterised unitary of the box. is_mixed : bool, default: False Whether the box is mixed self_adjoint : bool, default: False Whether the box is self-adjoint """ name: str dom: Ty cod: Ty data: float is_mixed: bool = False self_adjoint: bool = False
[docs] def lambdify(self, *symbols, **kwargs): """Return a lambda function that evaluates the box.""" from sympy import lambdify data = lambdify(symbols, self.data, dict(kwargs, modules=np)) return lambda *xs: type(self)(data(*xs))
@property def modules(self): if self.free_symbols: import sympy return sympy else: return get_backend()
[docs] class Rotation(Parametrized): """Single qubit gate defining a rotation around the bloch sphere."""
[docs] def __init__(self, phase): super().__init__( f'{type(self).__name__}({phase})', qubit, qubit, phase)
@property def phase(self) -> float: return self.data
[docs] def dagger(self) -> Self: return type(self)(-self.data)
[docs] class Rx(AntiConjugate, Rotation): """Single qubit gate defining a rotation aound the x-axis.""" @property def array(self): with backend() as np: half_theta = np.pi * self.data sin = self.modules.sin(half_theta) cos = self.modules.cos(half_theta) return np.array([[cos, -1j * sin], [-1j * sin, cos]])
[docs] class Ry(SelfConjugate, Rotation): """Single qubit gate defining a rotation aound the y-axis.""" @property def array(self): with backend() as np: half_theta = np.pi * self.data sin = self.modules.sin(half_theta) cos = self.modules.cos(half_theta) return np.array([[cos, sin], [-sin, cos]])
[docs] class Rz(AntiConjugate, Rotation): """Single qubit gate defining a rotation aound the z-axis.""" @property def array(self): with backend() as np: half_theta = self.modules.pi * self.data exp1 = np.e ** (-1j * half_theta) exp2 = np.e ** (1j * half_theta) return np.array([[exp1, 0], [0, exp2]])
[docs] class Controlled(Parametrized): """A gate that applies a unitary controlled by a qubit's state."""
[docs] def __init__(self, controlled: Box, distance=1): """Initialise a controlled box. Parameters ---------- controlled : Box The box to be controlled. distance : int, optional The distance between the control and the target, by default 1 """ assert distance self.distance = distance self.controlled = controlled width = len(controlled.dom) + abs(distance) super().__init__(f'C{controlled}', qubit ** width, qubit ** width, controlled.data, controlled.is_mixed)
def __hash__(self) -> int: return hash((self.controlled, self.distance)) def __setattr__(self, __name: str, __value: Any) -> None: if __name == 'data': self.controlled.data = __value return super().__setattr__(__name, __value) @property def phase(self) -> float: if isinstance(self.controlled, Rotation): return self.controlled.phase else: raise AttributeError('Controlled gate has no phase.')
[docs] def decompose(self) -> Diagram | Box: """Split a box (distance >1) into distance 1 box + swaps.""" if self.distance == 1: return self n_qubits = len(self.dom) skipped_qbs = n_qubits - (1 + len(self.controlled.dom)) if self.distance > 0: pattern = [0, *range(skipped_qbs + 1, n_qubits), *range(1, skipped_qbs + 1)] else: pattern = [n_qubits - 1, *range(n_qubits - 1)] perm: Diagram = Diagram.permutation(self.dom, pattern) diagram = (perm >> type(self)(self.controlled) @ Id(qubit ** skipped_qbs) >> perm.dagger()) return diagram
[docs] def lambdify(self, *symbols, **kwargs): """Return a lambda function that evaluates the box.""" c_fn = self.controlled.lambdify(*symbols) return lambda *xs: type(self)(c_fn(*xs), distance=self.distance)
@property def array(self): with backend() as np: controlled, distance = self.controlled, self.distance n_qubits = len(self.dom) if distance == 1: d = 1 << n_qubits - 1 part1 = np.array([[1, 0], [0, 0]]) part2 = np.array([[0, 0], [0, 1]]) array = (np.kron(part1, np.eye(d)) + np.kron(part2, np.array(controlled.array.reshape(d, d)))) else: array = self.decompose().eval() return array.reshape(*[2] * 2 * n_qubits)
[docs] def dagger(self): """Return the dagger of the box.""" return Controlled(self.controlled.dagger(), self.distance)
[docs] def rotate(self, z): """Conjugate the box.""" if z % 2 == 0: return self return Controlled(self.controlled.rotate(z), -self.distance)
[docs] class MixedState(SelfConjugate): """A mixed state is a state with a density matrix proportional to the identity matrix."""
[docs] def __init__(self): super().__init__('MixedState', Ty(), qubit, is_mixed=True)
[docs] def dagger(self): return Discard()
[docs] class Discard(SelfConjugate): """Discard a qubit. This is a measurement without post-selection."""
[docs] def __init__(self): super().__init__('Discard', qubit, Ty(), is_mixed=True)
[docs] def dagger(self): return MixedState()
[docs] class Measure(SelfConjugate): """Measure a qubit and return a classical information bit."""
[docs] def __init__(self): super().__init__('Measure', qubit, bit, is_mixed=True)
[docs] def dagger(self): return Encode()
[docs] class Encode(SelfConjugate): """Encode a classical information bit into a qubit."""
[docs] def __init__(self): super().__init__('Encode', bit, qubit, is_mixed=True)
[docs] def dagger(self): return Measure()
[docs] @dataclass class Scalar(Box): """A scalar amplifies a quantum state by a given factor.""" data: float | np.ndarray name: str = field(init=False) dom: Ty = field(default=Ty(), init=False) cod: Ty = field(default=Ty(), init=False) is_mixed: bool = field(default=False, init=False) self_adjoint: bool = field(default=False, init=False) z: int = field(default=0, init=False) def __post_init__(self) -> None: self.name = f'{self.data:.3f}' @property def array(self): with backend() as np: return np.array(self.data) __hash__: Callable[[Box], int] = Box.__hash__
[docs] def dagger(self): return replace(self, data=self.data.conjugate())
[docs] @dataclass class Sqrt(Scalar): """A Square root.""" data: float | np.ndarray name: str = field(init=False) dom: Ty = field(default=Ty(), init=False) cod: Ty = field(default=Ty(), init=False) is_mixed: bool = field(default=False, init=False) self_adjoint: bool = field(default=False, init=False) z: int = field(default=0, init=False) def __post_init__(self) -> None: self.name = f'√({self.data})' @property def array(self): with backend() as np: return np.array(self.data ** .5) __hash__: Callable[[], int] = Scalar.__hash__
[docs] def dagger(self): return replace(self, data=np.conjugate(self.data))
[docs] @dataclass class Daggered(tensor.Daggered, Box): """A daggered gate reverses the box's effect on a quantum state. Parameters ---------- box : Box The box to be daggered. """ box: Box name: str = field(init=False) dom: Ty = field(init=False) cod: Ty = field(init=False) data: float | np.ndarray | None = field(default=None, init=False) is_mixed: bool = field(default=False, init=False) self_adjoint: bool = field(default=False, init=False) z: int = field(init=False) def __post_init__(self) -> None: self.name = self.box.name + '†' self.dom = self.box.cod self.cod = self.box.dom self.data = self.box.data self.z = 0 self.is_mixed = self.box.is_mixed def __setattr__(self, __name: str, __value: Any) -> None: if __name == 'data': self.box.data = __value return super().__setattr__(__name, __value)
[docs] def dagger(self) -> Box: return self.box
__hash__: Callable[[Box], int] = Box.__hash__ __repr__: Callable[[Box], str] = Box.__repr__
[docs] class Bit(Box): """Classical state for a given bit.""" def __new__(cls, *bitstring: int): if len(bitstring) <= 1: return super(Bit, cls).__new__(cls) return Id().tensor(* [cls(bit) for bit in bitstring])
[docs] def __init__(self, bit_value: int) -> None: """Initialise a ket box. Parameters ---------- bit_value : int The state of the qubit (either 0 or 1). """ assert bit_value in {0, 1} self.bit = bit_value super().__init__(str(bit_value), Ty(), bit, np.eye(2)[bit_value].T)
SWAP = Swap(qubit, qubit) H = SelfConjugate('H', qubit, qubit, (2 ** -0.5) * np.array([[1, 1], [1, -1]]), self_adjoint=True) S = Box('S', qubit, qubit, np.array([[1, 0], [0, 1j]])) T = Box('T', qubit, qubit, np.array([[1, 0], [0, np.e ** (1j * np.pi / 4)]])) X = SelfConjugate('X', qubit, qubit, np.array([[0, 1], [1, 0]]), self_adjoint=True) Y = Box('Y', qubit, qubit, np.array([[0, 1j], [-1j, 0]]), self_adjoint=True) Z = SelfConjugate('Z', qubit, qubit, np.array([[1, 0], [0, -1]]), self_adjoint=True) CX = Controlled(X) CY = Controlled(Y) CZ = Controlled(Z) CCX = Controlled(CX) CCZ = Controlled(CZ) CRx = lambda phi, distance = 1: Controlled(Rx(phi), distance) # noqa: E731 CRy = lambda phi, distance = 1: Controlled(Ry(phi), distance) # noqa: E731 CRz = lambda phi, distance = 1: Controlled(Rz(phi), distance) # noqa: E731 GATES = { 'SWAP': SWAP, 'H': H, 'S': S, 'T': T, 'X': X, 'Y': Y, 'Z': Z, 'CZ': CZ, 'CY': CY, 'CX': CX, 'CCX': CCX, 'CCZ': CCZ, 'Rx': Rx, 'Ry': Ry, 'Rz': Rz, 'CRx': CRx, 'CRy': CRy, 'CRz': CRz, }