Source code for lambeq.text2diagram.ccg_rule

# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

__all__ = ['CCGRule', 'CCGRuleUseError']

from collections.abc import Sequence
from enum import Enum
from typing import Any

from lambeq.backend.grammar import Diagram, Id
from lambeq.text2diagram.ccg_type import CCGType


[docs] class CCGRuleUseError(Exception): """Error raised when a :py:class:`CCGRule` is applied incorrectly."""
[docs] def __init__(self, rule: CCGRule, message: str) -> None: self.rule = rule self.message = message
def __str__(self) -> str: return f'Illegal use of {self.rule}: {self.message}.'
[docs] class CCGRule(str, Enum): """An enumeration of the available CCG rules.""" _symbol: str UNKNOWN = 'UNK', '' LEXICAL = 'L', '' UNARY = 'U', '<U>' FORWARD_APPLICATION = 'FA', '>' BACKWARD_APPLICATION = 'BA', '<' FORWARD_COMPOSITION = 'FC', '>B' BACKWARD_COMPOSITION = 'BC', '<B' FORWARD_CROSSED_COMPOSITION = 'FX', '>Bx' BACKWARD_CROSSED_COMPOSITION = 'BX', '<Bx' GENERALIZED_FORWARD_COMPOSITION = 'GFC', '>Bⁿ' GENERALIZED_BACKWARD_COMPOSITION = 'GBC', '<Bⁿ' GENERALIZED_FORWARD_CROSSED_COMPOSITION = 'GFX', '>Bxⁿ' GENERALIZED_BACKWARD_CROSSED_COMPOSITION = 'GBX', '<Bxⁿ' REMOVE_PUNCTUATION_LEFT = 'LP', '<p' REMOVE_PUNCTUATION_RIGHT = 'RP', '>p' FORWARD_TYPE_RAISING = 'FTR', '>T' BACKWARD_TYPE_RAISING = 'BTR', '<T' CONJUNCTION = 'CONJ', '<&>' def __new__(cls, name: str, symbol: str = '') -> CCGRule: obj = str.__new__(cls, name) obj._value_ = name obj._symbol = symbol return obj @property def symbol(self) -> str: """The standard CCG symbol for the rule.""" if self == CCGRule.UNKNOWN: raise CCGRuleUseError(self, 'unknown CCG rule') else: return self._symbol @classmethod def _missing_(cls, _: Any) -> CCGRule: return cls.UNKNOWN
[docs] def check_match(self, /, left: CCGType, right: CCGType) -> None: """Raise an exception if the two arguments do not match.""" if left != right: raise CCGRuleUseError(self, f'mismatched types - {left} != {right}')
[docs] def resolve(self, dom: Sequence[CCGType], cod: CCGType) -> tuple[CCGType, ...]: """Perform type resolution on this rule use. This is used to propagate any type changes that has occured in the codomain to the domain, such that applying this rule to the rewritten domain produces the provided codomain, while remaining as compatible as possible with the provided domain. Parameters ---------- dom : list of CCGType The original domain of this rule use. cod : CCGType The required codomain of this rule use. Returns ------- tuple of CCGType The rewritten domain. """ if self == CCGRule.UNKNOWN: raise CCGRuleUseError(self, 'unknown CCG rule') elif self == CCGRule.LEXICAL: assert not dom return () elif self == CCGRule.UNARY: return cod, elif self in (CCGRule.BACKWARD_TYPE_RAISING, CCGRule.FORWARD_TYPE_RAISING): return cod.argument.argument, left, right = dom new_left: CCGType | None new_right: CCGType | None if self == CCGRule.FORWARD_APPLICATION: return cod << right, right elif self == CCGRule.BACKWARD_APPLICATION: return left, left >> cod elif self == CCGRule.FORWARD_COMPOSITION: self.check_match(left.right, right.left) return cod.result << left.right, right.left << cod.argument elif self == CCGRule.BACKWARD_COMPOSITION: self.check_match(left.right, right.left) return cod.argument >> left.right, right.left >> cod.result elif self == CCGRule.FORWARD_CROSSED_COMPOSITION: self.check_match(left.right, right.right) return cod.right << left.right, cod.left >> right.right elif self == CCGRule.BACKWARD_CROSSED_COMPOSITION: self.check_match(left.left, right.left) return left.left << cod.right, right.left >> cod.left elif self == CCGRule.GENERALIZED_FORWARD_COMPOSITION: ll, lr = left.left, left.right new_right, new_left = cod.replace_result(ll, lr, '/') assert new_left is not None return new_left << left.right, new_right elif self == CCGRule.GENERALIZED_BACKWARD_COMPOSITION: rl, rr = right.left, right.right new_left, new_right = cod.replace_result(rr, rl, '\\') assert new_right is not None return new_left, rl >> new_right elif self == CCGRule.GENERALIZED_FORWARD_CROSSED_COMPOSITION: ll, lr = left.left, left.right new_right, new_left = cod.replace_result(ll, lr, r'\|') assert new_left is not None return new_left << lr, new_right elif self == CCGRule.GENERALIZED_BACKWARD_CROSSED_COMPOSITION: rl, rr = right.left, right.right new_left, new_right = cod.replace_result(rr, rl, '/|') assert new_right is not None return new_left, right.left >> new_right elif self == CCGRule.REMOVE_PUNCTUATION_LEFT: return left, cod elif self == CCGRule.REMOVE_PUNCTUATION_RIGHT: return cod, right elif self == CCGRule.CONJUNCTION: if left.is_conjoinable: return cod << right, right elif right.is_conjoinable: return left, left >> cod else: raise CCGRuleUseError(self, 'no conjunction found') raise AssertionError('unreachable code')
[docs] def __call__(self, dom: Sequence[CCGType], cod: CCGType | None = None) -> Diagram: return self.apply(dom, cod)
[docs] def apply(self, dom: Sequence[CCGType], cod: CCGType | None = None) -> Diagram: """Produce a lambeq diagram for this rule. This is primarily used by CCG trees that have been resolved. This means, for example, that diagrams cannot be produced for the conjunction rule, since they are rewritten when resolved. Parameters ---------- dom : list of CCGType The domain of the diagram. cod : CCGType, optional The codomain of the diagram. This is only used for type-raising rules. Returns ------- :py:class:`lambeq.backend.grammar.Diagram` The resulting diagram. Raises ------ CCGRuleUseError If a diagram cannot be produced. """ if self == CCGRule.UNKNOWN: raise CCGRuleUseError(self, 'unknown CCG rule') elif self == CCGRule.LEXICAL: raise CCGRuleUseError(self, 'lexical rules are not applicable') elif self == CCGRule.CONJUNCTION: raise CCGRuleUseError( self, 'conjunctions should be resolved before drawing' ) # unary rules elif self in (CCGRule.UNARY, CCGRule.BACKWARD_TYPE_RAISING, CCGRule.FORWARD_TYPE_RAISING): if len(dom) != 1: raise CCGRuleUseError( self, f'expected a domain of length 1, got {len(dom)}' ) if self == CCGRule.UNARY: return Id(dom[0].to_grammar()) # else type-raising rule if cod is None: raise CCGRuleUseError( self, 'The codomain is required for type-raising rules.' ) result = cod.result.to_grammar() if self == CCGRule.BACKWARD_TYPE_RAISING: return Id(dom[0].to_grammar()) @ Diagram.caps(result.r, result) else: return Diagram.caps(result, result.l) @ Id(dom[0].to_grammar()) # binary rules if len(dom) != 2: raise CCGRuleUseError( self, f'expected a domain of length 2, got {len(dom)}' ) left, right = dom if self == CCGRule.FORWARD_APPLICATION: # X/Y + Y -> X # X @ Y.l + Y -> X return Diagram.fa(left.result.to_grammar(), right.to_grammar()) elif self == CCGRule.BACKWARD_APPLICATION: # Y + X\Y -> X # Y + Y.r @ X -> X return Diagram.ba(left.to_grammar(), right.result.to_grammar()) elif self == CCGRule.FORWARD_COMPOSITION: # X/Y + Y/Z -> X/Z # X @ Y.l + Y @ Z.l -> X @ Z.l return Diagram.fc(left.left.to_grammar(), left.right.to_grammar(), right.right.to_grammar()) elif self == CCGRule.BACKWARD_COMPOSITION: # Z\Y + X\Y -> X\Z # Z.r @ Y + Y.r @ X -> Z.r @ X return Diagram.bc(left.left.to_grammar(), left.right.to_grammar(), right.right.to_grammar()) elif self == CCGRule.FORWARD_CROSSED_COMPOSITION: # X/Y + Y\Z -> X\Z # X @ Y.l + Z.r @ Y -> Z.r @ X return Diagram.fx(left.left.to_grammar(), left.right.to_grammar(), right.left.to_grammar()) elif self == CCGRule.BACKWARD_CROSSED_COMPOSITION: # Y/Z + X\Y -> X/Z # Y @ Z.l + Y.r @ X -> X @ Z.l return Diagram.bx(left.right.to_grammar(), left.left.to_grammar(), right.right.to_grammar()) elif self == CCGRule.GENERALIZED_FORWARD_COMPOSITION: # X/Y + (Y/Z)/... -> (X/Z)/... # X @ Y.l + Y @ Z.l @ ... -> X @ Z.l @ ... mid = left.argument.to_grammar() return (Id(left.result.to_grammar())
[docs] @ Diagram.cups(mid.l, mid) @ Id(right.to_grammar()[len(mid):])) elif self == CCGRule.GENERALIZED_BACKWARD_COMPOSITION: # (Y\Z)\... + X\Y -> (X\Z)\... # ... @ Z.r @ Y + Y.r @ X -> ... @ Z.r @ X mid = right.argument.to_grammar() return (Id(left.to_grammar()[:-len(mid)]) @ Diagram.cups(mid, mid.r) @ Id(right.result.to_grammar())) elif self == CCGRule.GENERALIZED_FORWARD_CROSSED_COMPOSITION: # X/Y + (Y\Z)|... -> (X\Z)|... # X @ Y.l + ... @ Z.r @ Y @ ... -> ... @ Z.r @ X @ ... mid = left.left.to_grammar() l, join, r = right.split(left.right) return ( Diagram.swap(mid << join, l) @ Id(join) >> Id(l @ mid) @ Diagram.cups(join.l, join) ) @ Id(r) elif self == CCGRule.GENERALIZED_BACKWARD_CROSSED_COMPOSITION: # (Y/Z)|... + X\Y -> (X/Z)|... # ... @ Y @ Z.l @ ... + Y.r @ X -> ... @ X @ Z.l @ ... mid = right.right.to_grammar() l, join, r = left.split(right.left) return Id(l) @ ( Id(join) @ Diagram.swap(r, join >> mid) >> Diagram.cups(join, join.r) @ Id(mid @ r) ) elif self == CCGRule.REMOVE_PUNCTUATION_LEFT: # punc + X -> X return Id(right.to_grammar()) elif self == CCGRule.REMOVE_PUNCTUATION_RIGHT: # X + punc -> X return Id(left.to_grammar()) raise AssertionError('unreachable code')
@classmethod def infer_rule(cls, dom: Sequence[CCGType], cod: CCGType) -> CCGRule: """Infer the CCG rule that admits the given domain and codomain. Return :py:attr:`CCGRule.UNKNOWN` if no other rule matches. Parameters ---------- dom : list of CCGType The domain of the rule. cod : CCGType The codomain of the rule. Returns ------- CCGRule A CCG rule that admits the required domain and codomain. """ if not dom: return CCGRule.LEXICAL elif len(dom) == 1: if cod.is_complex: if cod == cod.result.over(cod.result.under(dom[0])): return CCGRule.FORWARD_TYPE_RAISING if cod == cod.result.under(cod.result.over(dom[0])): return CCGRule.BACKWARD_TYPE_RAISING return CCGRule.UNARY elif len(dom) == 2: left, right = dom if left == CCGType.PUNCTUATION: if cod == right >> right: return CCGRule.CONJUNCTION else: return CCGRule.REMOVE_PUNCTUATION_LEFT if right == CCGType.PUNCTUATION: if cod == left << left: return CCGRule.CONJUNCTION else: return CCGRule.REMOVE_PUNCTUATION_RIGHT if left == cod << right: return CCGRule.FORWARD_APPLICATION if right == left >> cod: return CCGRule.BACKWARD_APPLICATION if CCGType.CONJUNCTION in (left, right): return CCGRule.CONJUNCTION if cod.is_complex and left.is_complex and right.is_complex: ll = left.left lr = left.right rl = right.left rr = right.right if lr == rl and (cod.left, cod.right) == (ll, rr): if cod.is_over and left.is_over and right.is_over: return CCGRule.FORWARD_COMPOSITION if cod.is_under and left.is_under and right.is_under: return CCGRule.BACKWARD_COMPOSITION if right.is_under: if left.is_over and ll == rl and cod == rr << lr: return CCGRule.BACKWARD_CROSSED_COMPOSITION if left.replace_result(rl, rr, '\\') == (cod, rl): return CCGRule.GENERALIZED_BACKWARD_COMPOSITION if left.replace_result(rl, rr, '/|') == (cod, rl): return CCGRule.GENERALIZED_BACKWARD_CROSSED_COMPOSITION if left.is_over: if right.is_under and lr == rr and cod == rl >> ll: return CCGRule.FORWARD_CROSSED_COMPOSITION if right.replace_result(lr, ll, '/') == (cod, lr): return CCGRule.GENERALIZED_FORWARD_COMPOSITION if right.replace_result(lr, ll, r'\|') == (cod, lr): return CCGRule.GENERALIZED_FORWARD_CROSSED_COMPOSITION return CCGRule.UNKNOWN