Source code for lambeq.training.rotosolve_optimizer

# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
RotosolveOptimizer
==================
Module implementing the Rotosolve optimizer.

"""
from __future__ import annotations

from collections.abc import Callable, Iterable, Mapping
from typing import Any

import numpy as np
from numpy.typing import ArrayLike

from lambeq.training.optimizer import Optimizer
from lambeq.training.quantum_model import QuantumModel


[docs] class RotosolveOptimizer(Optimizer): """An optimizer using the Rotosolve algorithm. Rotosolve is an optimizer for parametrized quantum circuits. It applies a shift of ±π/2 radians to each parameter, then updates the parameter based on the resulting loss. The loss function is assumed to be a linear combination of Hamiltonian measurements. This optimizer is designed to work with ansätze that are composed of single-qubit rotations, such as the :py:class:`.StronglyEntanglingAnsatz`, :py:class:`.Sim14Ansatz` and :py:class:`.Sim15Ansatz`. See `Ostaszewski et al. <https://quantum-journal.org/papers/q-2021-01-28-391/pdf/>`_ for details. """ model: QuantumModel
[docs] def __init__(self, *, model: QuantumModel, loss_fn: Callable[[Any, Any], float], hyperparams: dict[str, float] | None = None, bounds: ArrayLike | None = None) -> None: """Initialise the Rotosolve optimizer. Parameters ---------- model : :py:class:`.QuantumModel` A lambeq quantum model. loss_fn : callable A loss function of the form `loss(prediction, labels)`. hyperparams : dict of str to float, optional Unused. bounds : ArrayLike, optional Unused. """ super().__init__(model=model, loss_fn=loss_fn, hyperparams={}, bounds=None)
[docs] @staticmethod def project(x: np.ndarray) -> np.ndarray: return abs(x) % 1
[docs] def backward(self, batch: tuple[Iterable[Any], np.ndarray]) -> float: """Perform a single backward pass. Rotosolve does not calculate a global gradient. Instead, the parameters are updated after applying a shift of ±π/2 radians to each parameter. Therefore, there is no global step to take. Parameters ---------- batch : tuple of Iterable and numpy.ndarray Current batch. Contains an Iterable of diagrams in index 0, and the targets in index 1. Returns ------- float The calculated loss after the backward pass. """ diagrams, targets = batch for i in range(len(self.model.weights)): # M_phi phi = self.model.weights[i] m_phi = self.loss_fn(self.model(diagrams), targets) # M_phi + pi/2 self.model.weights[i] = phi + 1/4 m_phi_plus = self.loss_fn(self.model(diagrams), targets) # M_phi - pi/2 self.model.weights[i] = phi - 1/4 m_phi_minus = self.loss_fn(self.model(diagrams), targets) # Update weight angle = np.arctan2(2*m_phi - m_phi_plus - m_phi_minus, m_phi_plus - m_phi_minus) self.model.weights[i] = self.project(phi - 1/4 - angle / (2*np.pi)) return self.loss_fn(self.model(diagrams), targets)
[docs] def step(self) -> None: # No global step is taken return None
[docs] def state_dict(self) -> dict[str, Any]: # Rotosolve is a stateless optimizer. return {}
[docs] def load_state_dict(self, state_dict: Mapping[str, Any]) -> None: # Rotosolve is a stateless optimizer. return None