Source code for lambeq.training.quantum_model

# Copyright 2021-2023 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
QuantumModel
============
Module containing the base class for a quantum lambeq model.

"""
from __future__ import annotations

from abc import abstractmethod
from typing import Any, TYPE_CHECKING

from discopy.tensor import Diagram, Tensor
import numpy as np


if TYPE_CHECKING:
    from jax import numpy as jnp


from lambeq.training.checkpoint import Checkpoint
from lambeq.training.model import Model


[docs]class QuantumModel(Model): """Quantum Model base class. Attributes ---------- symbols : list of symbols A sorted list of all :py:class:`Symbols <.Symbol>` occurring in the data. weights : array A data structure containing the numeric values of the model parameters """ weights: np.ndarray
[docs] def __init__(self) -> None: """Initialise a :py:class:`QuantumModel`.""" super().__init__() self._training = False self._train_predictions : list[Any] = []
def _log_prediction(self, y: Any) -> None: """Log a prediction of the model.""" self._train_predictions.append(y) def _clear_predictions(self) -> None: """Clear the logged predictions of the model.""" self._train_predictions = [] def _normalise_vector(self, predictions: np.ndarray) -> np.ndarray: """Normalise the vector input. Special cases: * scalar value: Returns the absolute value. * zero-vector: Returns the vector as-is. """ backend = Tensor.get_backend() ret: np.ndarray = backend.abs(predictions) if predictions.shape: # Prevent division by 0 l1_norm = backend.maximum(1e-9, ret.sum()) ret = ret / l1_norm return ret
[docs] def initialise_weights(self) -> None: """Initialise the weights of the model. Raises ------ ValueError If `model.symbols` are not initialised. """ if not self.symbols: raise ValueError('Symbols not initialised. Instantiate through ' '`from_diagrams()`.') self.weights = np.random.rand(len(self.symbols))
def _load_checkpoint(self, checkpoint: Checkpoint) -> None: """Load the model weights and symbols from a lambeq :py:class:`.Checkpoint`. Parameters ---------- checkpoint : :py:class:`.Checkpoint` Checkpoint containing the model weights, symbols and additional information. """ self.symbols = checkpoint['model_symbols'] self.weights = checkpoint['model_weights'] def _make_checkpoint(self) -> Checkpoint: """Create checkpoint that contains the model weights and symbols. Returns ------- :py:class:`.Checkpoint` Checkpoint containing the model weights, symbols and additional information. """ checkpoint = Checkpoint() checkpoint.add_many({'model_symbols': self.symbols, 'model_weights': self.weights}) return checkpoint
[docs] @abstractmethod def get_diagram_output( self, diagrams: list[Diagram] ) -> jnp.ndarray | np.ndarray: """Return the diagram prediction. Parameters ---------- diagrams : list of :py:class:`~discopy.tensor.Diagram` The :py:class:`Circuits <discopy.quantum.circuit.Circuit>` to be evaluated. """
[docs] def __call__(self, *args: Any, **kwargs: Any) -> Any: out = self.forward(*args, **kwargs) if self._training: self._log_prediction(out) return out
[docs] @abstractmethod def forward(self, x: list[Diagram]) -> Any: """Compute the forward pass of the model using `get_model_output` """