Training hybrid models using the Pennylane backend

In this example, we will first train a pure quantum model using PennyLane and PyTorch to classify whether a sentence is about cooking or computing. We will then train a hybrid model that takes in pairs of sentences and determines whether they are talking about the same or different topics.

[1]:
BATCH_SIZE = 10
EPOCHS = 30
LEARNING_RATE = 0.1
SEED = 2
[2]:
import torch
import random
import numpy as np

torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)

Read in the data and create diagrams

[3]:
def read_data(filename):
    labels, sentences = [], []
    with open(filename) as f:
        for line in f:
            t = float(line[0])
            labels.append([t, 1-t])
            sentences.append(line[1:].strip())
    return labels, sentences


train_labels, train_data = read_data('datasets/mc_train_data.txt')
dev_labels, dev_data = read_data('datasets/mc_dev_data.txt')
test_labels, test_data = read_data('datasets/mc_test_data.txt')
[4]:
from lambeq import BobcatParser

reader = BobcatParser(verbose='text')

raw_train_diagrams = reader.sentences2diagrams(train_data)
raw_dev_diagrams = reader.sentences2diagrams(dev_data)
raw_test_diagrams = reader.sentences2diagrams(test_data)
Tagging sentences.
Parsing tagged sentences.
Turning parse trees to diagrams.
Tagging sentences.
Parsing tagged sentences.
Turning parse trees to diagrams.
Tagging sentences.
Parsing tagged sentences.
Turning parse trees to diagrams.

Remove cups

[5]:
from lambeq import RemoveCupsRewriter

remove_cups = RemoveCupsRewriter()

train_diagrams = [remove_cups(diagram) for diagram in raw_train_diagrams]
dev_diagrams = [remove_cups(diagram) for diagram in raw_dev_diagrams]
test_diagrams = [remove_cups(diagram) for diagram in raw_test_diagrams]

train_diagrams[0].draw()
../_images/examples_pennylane_8_0.png

Create circuits

[6]:
from lambeq import AtomicType, IQPAnsatz

ansatz = IQPAnsatz({AtomicType.NOUN: 1, AtomicType.SENTENCE: 1},
                   n_layers=1, n_single_qubit_params=3)

train_circuits = [ansatz(diagram) for diagram in train_diagrams]
dev_circuits =  [ansatz(diagram) for diagram in dev_diagrams]
test_circuits = [ansatz(diagram) for diagram in test_diagrams]

train_circuits[0].draw(figsize=(8, 8))
../_images/examples_pennylane_10_0.png

Create (pure quantum) model and initialise parameters

[7]:
from lambeq import PennyLaneModel

all_circuits = train_circuits + dev_circuits + test_circuits

model = PennyLaneModel.from_diagrams(all_circuits)
model.initialise_weights()

Prepare train dataset

[8]:
from lambeq import Dataset

train_dataset = Dataset(train_circuits,
                        train_labels,
                        batch_size=BATCH_SIZE)

val_dataset = Dataset(dev_circuits, dev_labels)

Training

Using PytorchTrainer

[9]:
def acc(y_hat, y):
    return (torch.argmax(y_hat, dim=1) ==
            torch.argmax(y, dim=1)).sum().item()/len(y)

def loss(y_hat, y):
    return torch.nn.functional.mse_loss(y_hat, y)
[10]:
from lambeq import PytorchTrainer

trainer = PytorchTrainer(
        model=model,
        loss_function=loss,
        optimizer=torch.optim.Adam,
        learning_rate=LEARNING_RATE,
        epochs=EPOCHS,
        evaluate_functions={"acc": acc},
        evaluate_on_train=True,
        use_tensorboard=False,
        verbose='text',
        seed=SEED
    )

trainer.fit(train_dataset, val_dataset)
Epoch 1:   train/loss: 0.1542   valid/loss: 0.2271   train/acc: 0.5571   valid/acc: 0.5333
Epoch 2:   train/loss: 0.1318   valid/loss: 0.2877   train/acc: 0.8571   valid/acc: 0.6000
Epoch 3:   train/loss: 0.0677   valid/loss: 0.1879   train/acc: 0.8429   valid/acc: 0.7333
Epoch 4:   train/loss: 0.1274   valid/loss: 0.1289   train/acc: 0.9000   valid/acc: 0.8333
Epoch 5:   train/loss: 0.0604   valid/loss: 0.1909   train/acc: 0.8571   valid/acc: 0.6667
Epoch 6:   train/loss: 0.0572   valid/loss: 0.1599   train/acc: 0.8857   valid/acc: 0.7333
Epoch 7:   train/loss: 0.0147   valid/loss: 0.1156   train/acc: 0.9286   valid/acc: 0.8000
Epoch 8:   train/loss: 0.0057   valid/loss: 0.0661   train/acc: 0.8857   valid/acc: 0.9333
Epoch 9:   train/loss: 0.0987   valid/loss: 0.1099   train/acc: 0.9429   valid/acc: 0.8667
Epoch 10:  train/loss: 0.0067   valid/loss: 0.0927   train/acc: 0.9714   valid/acc: 0.8667
Epoch 11:  train/loss: 0.0855   valid/loss: 0.0410   train/acc: 0.9714   valid/acc: 0.9667
Epoch 12:  train/loss: 0.0431   valid/loss: 0.0415   train/acc: 0.9714   valid/acc: 0.9333
Epoch 13:  train/loss: 0.0365   valid/loss: 0.0260   train/acc: 1.0000   valid/acc: 1.0000
Epoch 14:  train/loss: 0.0007   valid/loss: 0.0238   train/acc: 1.0000   valid/acc: 1.0000
Epoch 15:  train/loss: 0.0002   valid/loss: 0.0110   train/acc: 1.0000   valid/acc: 1.0000
Epoch 16:  train/loss: 0.0002   valid/loss: 0.0057   train/acc: 1.0000   valid/acc: 1.0000
Epoch 17:  train/loss: 0.0014   valid/loss: 0.0077   train/acc: 1.0000   valid/acc: 1.0000
Epoch 18:  train/loss: 0.0047   valid/loss: 0.0070   train/acc: 1.0000   valid/acc: 1.0000
Epoch 19:  train/loss: 0.0020   valid/loss: 0.0059   train/acc: 1.0000   valid/acc: 1.0000
Epoch 20:  train/loss: 0.0007   valid/loss: 0.0050   train/acc: 1.0000   valid/acc: 1.0000
Epoch 21:  train/loss: 0.0002   valid/loss: 0.0045   train/acc: 1.0000   valid/acc: 1.0000
Epoch 22:  train/loss: 0.0001   valid/loss: 0.0053   train/acc: 1.0000   valid/acc: 1.0000
Epoch 23:  train/loss: 0.0001   valid/loss: 0.0055   train/acc: 1.0000   valid/acc: 1.0000
Epoch 24:  train/loss: 0.0000   valid/loss: 0.0056   train/acc: 1.0000   valid/acc: 1.0000
Epoch 25:  train/loss: 0.0000   valid/loss: 0.0056   train/acc: 1.0000   valid/acc: 1.0000
Epoch 26:  train/loss: 0.0000   valid/loss: 0.0057   train/acc: 1.0000   valid/acc: 1.0000
Epoch 27:  train/loss: 0.0000   valid/loss: 0.0058   train/acc: 1.0000   valid/acc: 1.0000
Epoch 28:  train/loss: 0.0000   valid/loss: 0.0058   train/acc: 1.0000   valid/acc: 1.0000
Epoch 29:  train/loss: 0.0000   valid/loss: 0.0058   train/acc: 1.0000   valid/acc: 1.0000
Epoch 30:  train/loss: 0.0000   valid/loss: 0.0057   train/acc: 1.0000   valid/acc: 1.0000

Training completed!

Determine test accuracy

[11]:
def accuracy(circs, labels):
    probs = model(circs)
    return (torch.argmax(probs, dim=1) ==
            torch.argmax(torch.tensor(labels), dim=1)).sum().item()/len(circs)

accuracy(test_circuits, test_labels)
[11]:
1.0

Using standard PyTorch

As we have a small dataset, we can use early stopping to prevent overfitting to the training data.

[12]:
def accuracy(circs, labels):
    probs = model(circs)
    return (torch.argmax(probs, dim=1) ==
            torch.argmax(torch.tensor(labels), dim=1)).sum().item()/len(circs)
[13]:
import pickle

model = PennyLaneModel.from_diagrams(all_circuits)
model.initialise_weights()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

best = {'acc': 0, 'epoch': 0}

for i in range(EPOCHS):
    epoch_loss = 0
    for circuits, labels in train_dataset:
        optimizer.zero_grad()
        probs = model(circuits)
        d_type = model.weights[0].dtype
        probs = probs.to(d_type)
        loss = torch.nn.functional.mse_loss(probs,
                                            torch.tensor(labels))
        epoch_loss += loss.item()
        loss.backward()
        optimizer.step()

    if i % 5 == 0:
        dev_acc = accuracy(dev_circuits, dev_labels)

        print("Epoch: {}".format(i))
        print("Train loss: {}".format(epoch_loss))
        print("Dev acc: {}".format(dev_acc))

        if dev_acc > best['acc']:
            best['acc'] = dev_acc
            best['epoch'] = i
            model.save("model.lt")
        elif i - best['epoch'] >= 10:
            print("Early stopping")
            break

if best["acc"] > accuracy(dev_circuits, dev_labels):
    model.load("model.lt")
Epoch: 0
Train loss: 1.8844525516033173
Dev acc: 0.8
Epoch: 5
Train loss: 0.19278545631095767
Dev acc: 0.9666666666666667
Epoch: 10
Train loss: 0.014469785994151607
Dev acc: 0.9333333333333333
Epoch: 15
Train loss: 0.0006354562428896315
Dev acc: 0.9666666666666667
Early stopping

Determine the test accuracy

[14]:
accuracy(test_circuits, test_labels)
[14]:
0.9666666666666667

Creating a hybrid model

This model will take in pairs of diagrams and attempt to determine whether they are talking about the same or different topics. It does this by first running the circuits to get a probability ouput on the open wire, and then passes this output to a simple neural network. We expect the circuits to learn to output [0, 1] or [1, 0] depending on the topic they are referring to (cooking or computing), and the neural network to learn to XOR these outputs to determine whether the topics are the same (in which case it should ouput 0) or different (in which case it should output 1). PennyLane allows us to train both the circuits and the NN simultaneously using PyTorch autograd.

[15]:
BATCH_SIZE = 50
EPOCHS = 100
LEARNING_RATE = 0.1
SEED = 2
[16]:
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)

As the probability outputs from our circuits are guaranteed to be positive, we transform these outputs x by 2 * (x - 0.5), giving inputs to the neural network in the range [-1, 1]. This helps us to avoid “dying ReLUs”, which could otherwise occur if all the input weights to a given neuron were negative, leading to the gradient of all these weights being 0. (A couple of alternative approaches could also involve initialising all the neural network weights to be positive, or using LeakyReLU as the activation function).

[17]:
from torch import nn

class XORSentenceModel(PennyLaneModel):
    def __init__(self, **kwargs):
        PennyLaneModel.__init__(self, **kwargs)

        self.xor_net = nn.Sequential(
            nn.Linear(4, 10),
            nn.ReLU(),
            nn.Linear(10, 1),
            nn.Sigmoid()
            )

    def forward(self, diagram_pairs):
        a, b = zip(*diagram_pairs)
        evaluated_pairs = torch.cat((self.get_diagram_output(a),
                                     self.get_diagram_output(b)),
                                    dim=1)
        evaluated_pairs = 2 * (evaluated_pairs - 0.5)
        out = self.xor_net(evaluated_pairs)
        return out

Make paired dataset

[18]:
from itertools import combinations

def make_pair_data(diagrams, labels):
    pair_diags = list(combinations(diagrams, 2))
    pair_labels = [int(x[0] == y[0]) for x, y in combinations(labels, 2)]

    return pair_diags, pair_labels

train_pair_circuits, train_pair_labels = make_pair_data(train_circuits,
                                                        train_labels)
dev_pair_circuits, dev_pair_labels = make_pair_data(dev_circuits, dev_labels)
test_pair_circuits, test_pair_labels = make_pair_data(test_circuits,
                                                      test_labels)

There are lots of pairs (2415 train pairs), so we’ll sample a subset to make this example train more quickly.

[19]:
TRAIN_SAMPLES, DEV_SAMPLES, TEST_SAMPLES = 300, 200, 200
[20]:
train_pair_circuits, train_pair_labels = (
    zip(*random.sample(list(zip(train_pair_circuits, train_pair_labels)),
                       TRAIN_SAMPLES)))
dev_pair_circuits, dev_pair_labels = (
    zip(*random.sample(list(zip(dev_pair_circuits, dev_pair_labels)), DEV_SAMPLES)))
test_pair_circuits, test_pair_labels = (
    zip(*random.sample(list(zip(test_pair_circuits, test_pair_labels)), TEST_SAMPLES)))

Initialise the model

[21]:
all_pair_circuits = (train_pair_circuits +
                     dev_pair_circuits +
                     test_pair_circuits)
a, b = zip(*all_pair_circuits)

model = XORSentenceModel.from_diagrams(a + b)
model.initialise_weights()

train_pair_dataset = Dataset(train_pair_circuits,
                             train_pair_labels,
                             batch_size=BATCH_SIZE)

optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

Train the model and log accuracies

Only log every five epochs as evaluating is expensive.

[22]:
def accuracy(circs, labels):
    predicted = model(circs)
    return (torch.round(torch.flatten(predicted)) ==
            torch.Tensor(labels)).sum().item()/len(circs)
[23]:
best = {'acc': 0, 'epoch': 0}

for i in range(EPOCHS):
    epoch_loss = 0
    for circuits, labels in train_pair_dataset:
        optimizer.zero_grad()
        predicted = model(circuits)
        loss = torch.nn.functional.binary_cross_entropy(
            torch.flatten(predicted), torch.Tensor(labels))
        epoch_loss += loss.item()
        loss.backward()
        optimizer.step()

    if i % 5 == 0:
        dev_acc = accuracy(dev_pair_circuits, dev_pair_labels)

        print("Epoch: {}".format(i))
        print("Train loss: {}".format(epoch_loss))
        print("Dev acc: {}".format(dev_acc))

        if dev_acc > best['acc']:
            best['acc'] = dev_acc
            best['epoch'] = i
            model.save("xor_model.lt")
        elif i - best['epoch'] >= 10:
            print("Early stopping")
            break

if best["acc"] > accuracy(dev_pair_circuits, dev_pair_labels):
    model.load("xor_model.lt")
    model = model.double()
Epoch: 0
Train loss: 4.250532686710358
Dev acc: 0.53
Epoch: 5
Train loss: 1.1775649935007095
Dev acc: 0.79
Epoch: 10
Train loss: 3.184345841407776
Dev acc: 0.74
Epoch: 15
Train loss: 0.0829660682938993
Dev acc: 0.88
Epoch: 20
Train loss: 0.0021069025970064104
Dev acc: 0.815
Epoch: 25
Train loss: 0.0008974437660071999
Dev acc: 0.78
Early stopping
[24]:
accuracy(test_pair_circuits, test_pair_labels)
[24]:
0.88