lambeq.training
- class lambeq.training.Checkpoint[source]
Bases:
collections.abc.Mapping
Checkpoint class.
- Attributes
- entriesdict
All data, stored as part of the checkpoint.
- __init__() None [source]
Initialise a
Checkpoint
.
- add_many(values: Mapping[str, Any]) None [source]
Adds several values into the checkpoint.
- Parameters
- valuesMapping from str to any
The values to be added into the checkpoint.
- classmethod from_file(path: Union[str, os.PathLike[str]]) lambeq.training.checkpoint.Checkpoint [source]
Load the checkpoint contents from the file.
- Parameters
- pathstr or PathLike
Path to the checkpoint file.
- Raises
- FileNotFoundError
If no file is found at the given path.
- get(k[, d]) D[k] if k in D, else d. d defaults to None.
- items() a set-like object providing a view on D's items
- keys() a set-like object providing a view on D's keys
- to_file(path: Union[str, os.PathLike[str]]) None [source]
Save entries to a file and deletes the in-memory copy.
- Parameters
- pathstr or PathLike
Path to the checkpoint file.
- values() an object providing a view on D's values
- class lambeq.training.Dataset(data: list[Any], targets: list[Any], batch_size: int = 0, shuffle: bool = True)[source]
Bases:
object
Dataset class for the training of a lambeq model.
Data is returned in the format of
discopy.tensor.Tensor
’s backend, which by default is set to NumPy. For example, to access the dataset as PyTorch tensors:>>> dataset = Dataset(['data1'], [[0, 1, 2, 3]]) >>> with Tensor.backend('pytorch'): ... print(dataset[0]) # becomes pytorch tensor ('data1', tensor([0, 1, 2, 3])) >>> print(dataset[0]) # numpy array again ('data1', array([0, 1, 2, 3]))
- __init__(data: list[Any], targets: list[Any], batch_size: int = 0, shuffle: bool = True) None [source]
Initialise a Dataset for lambeq training.
- Parameters
- datalist
Data used for training.
- targetslist
List of labels.
- batch_sizeint, default: 0
Batch size for batch generation, by default full dataset.
- shufflebool, default: True
Enable data shuffling during training.
- Raises
- ValueError
When ‘data’ and ‘targets’ do not match in size.
- class lambeq.training.Model[source]
Bases:
abc.ABC
Model base class.
- Attributes
- symbolslist of symbols
A sorted list of all
Symbols
occuring in the data.- weightsCollection
A data structure containing the numeric values of the model’s parameters.
- classmethod from_checkpoint(checkpoint_path: Union[str, os.PathLike[str]], **kwargs: Any) lambeq.training.model.Model [source]
Load the weights and symbols from a training checkpoint.
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.
- classmethod from_diagrams(diagrams: list[Diagram], **kwargs: Any) Model [source]
Build model from a list of
Diagrams
.- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation in
NumpyModel
.
- abstract get_diagram_output(diagrams: list[Diagram]) Any [source]
Return the diagram prediction.
- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- load(checkpoint_path: Union[str, os.PathLike[str]]) None [source]
Load model data from a path pointing to a lambeq checkpoint.
Checkpoints that are created by a lambeq
Trainer
usually have the extension .lt.- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- save(checkpoint_path: Union[str, os.PathLike[str]]) None [source]
Create a lambeq
Checkpoint
and save to a path.Example: >>> from lambeq import PytorchModel >>> model = PytorchModel() >>> model.save(‘my_checkpoint.lt’)
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- class lambeq.training.NumpyModel(use_jit: bool = False)[source]
Bases:
lambeq.training.quantum_model.QuantumModel
A lambeq model for an exact classical simulation of a quantum pipeline.
- __call__(*args: Any, **kwargs: Any) Any
Call self as a function.
- __init__(use_jit: bool = False) None [source]
Initialise an NumpyModel.
- Parameters
- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation.
- forward(x: list[Diagram]) Any [source]
Perform default forward pass of a lambeq model.
In case of a different datapoint (e.g. list of tuple) or additional computational steps, please override this method.
- classmethod from_checkpoint(checkpoint_path: Union[str, os.PathLike[str]], **kwargs: Any) lambeq.training.model.Model
Load the weights and symbols from a training checkpoint.
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.
- classmethod from_diagrams(diagrams: list[Diagram], **kwargs: Any) Model
Build model from a list of
Diagrams
.- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation in
NumpyModel
.
- get_diagram_output(diagrams: list[Diagram]) Union[jnp.ndarray, numpy.ndarray] [source]
Return the exact prediction for each diagram.
- initialise_weights() None
Initialise the weights of the model.
- Raises
- ValueError
If model.symbols are not initialised.
- load(checkpoint_path: Union[str, os.PathLike[str]]) None
Load model data from a path pointing to a lambeq checkpoint.
Checkpoints that are created by a lambeq
Trainer
usually have the extension .lt.- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- save(checkpoint_path: Union[str, os.PathLike[str]]) None
Create a lambeq
Checkpoint
and save to a path.Example: >>> from lambeq import PytorchModel >>> model = PytorchModel() >>> model.save(‘my_checkpoint.lt’)
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- weights: np.ndarray
- class lambeq.training.Optimizer(model: Model, hyperparams: dict[Any, Any], loss_fn: Callable[[Any, Any], float], bounds: Optional[ArrayLike] = None)[source]
Bases:
abc.ABC
Optimizer base class.
- __init__(model: Model, hyperparams: dict[Any, Any], loss_fn: Callable[[Any, Any], float], bounds: Optional[ArrayLike] = None) None [source]
Initialise the optimizer base class.
- Parameters
- model
QuantumModel
A lambeq model.
- hyperparamsdict of str to float.
A dictionary containing the models hyperparameters.
- loss_fnCallable
A loss function of form loss(prediction, labels).
- boundsArrayLike, optional
The range of each of the model’s parameters.
- model
- abstract backward(batch: tuple[Iterable[Any], np.ndarray]) float [source]
Calculate the gradients of the loss function.
The gradient is calculated with respect to the model parameters.
- Parameters
- batchtuple of list and numpy.ndarray
Current batch.
- Returns
- float
The calculated loss.
- class lambeq.training.PytorchModel[source]
Bases:
lambeq.training.model.Model
,torch.nn.modules.module.Module
A lambeq model for the classical pipeline using PyTorch.
- T_destination
alias of TypeVar(‘T_destination’, bound=
Dict
[str
,Any
])
- __call__(*args: Any, **kwds: Any) Any
Call self as a function.
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Args:
- name (str): name of the child module. The child module can be
accessed from this module using the given name
module (Module): child module to be added to the module.
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).- Args:
fn (
Module
-> None): function to be applied to each submodule- Returns:
Module: self
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() torch.nn.modules.module.T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
Module: self
- buffers(recurse: bool = True) Iterator[torch.Tensor]
Returns an iterator over module buffers.
- Args:
- recurse (bool): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor: module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module]
Returns an iterator over immediate children modules.
- Yields:
Module: a child module
- cpu() torch.nn.modules.module.T
Moves all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
Module: self
- cuda(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Args:
- device (int, optional): if specified, all parameters will be
copied to that device
- Returns:
Module: self
- double() torch.nn.modules.module.T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
Module: self
- dump_patches: bool = False
- eval() torch.nn.modules.module.T
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
Module: self
- extra_repr() str
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() torch.nn.modules.module.T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
Module: self
- forward(x: list[Diagram]) torch.Tensor [source]
Perform default forward pass by contracting tensors.
In case of a different datapoint (e.g. list of tuple) or additional computational steps, please override this method.
- classmethod from_checkpoint(checkpoint_path: Union[str, os.PathLike[str]], **kwargs: Any) lambeq.training.model.Model
Load the weights and symbols from a training checkpoint.
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.
- classmethod from_diagrams(diagrams: list[Diagram], **kwargs: Any) Model
Build model from a list of
Diagrams
.- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation in
NumpyModel
.
- get_buffer(target: str) torch.Tensor
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Args:
- target: The fully-qualified string name of the buffer
to look for. (See
get_submodule
for how to specify a fully-qualified string.)
- Returns:
torch.Tensor: The buffer referenced by
target
- Raises:
- AttributeError: If the target string references an invalid
path or resolves to something that is not a buffer
- get_diagram_output(diagrams: list[Diagram]) torch.Tensor [source]
Contract diagrams using tensornetwork.
- get_extra_state() Any
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
object: Any extra state to store in the module’s state_dict
- get_parameter(target: str) torch.nn.parameter.Parameter
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Args:
- target: The fully-qualified string name of the Parameter
to look for. (See
get_submodule
for how to specify a fully-qualified string.)
- Returns:
torch.nn.Parameter: The Parameter referenced by
target
- Raises:
- AttributeError: If the target string references an invalid
path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Args:
- target: The fully-qualified string name of the submodule
to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
torch.nn.Module: The submodule referenced by
target
- Raises:
- AttributeError: If the target string references an invalid
path or resolves to something that is not an
nn.Module
- half() torch.nn.modules.module.T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
Module: self
- initialise_weights() None [source]
Initialise the weights of the model.
- Raises
- ValueError
If model.symbols are not initialised.
- ipu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T
Moves all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Arguments:
- device (int, optional): if specified, all parameters will be
copied to that device
- Returns:
Module: self
- load(checkpoint_path: Union[str, os.PathLike[str]]) None
Load model data from a path pointing to a lambeq checkpoint.
Checkpoints that are created by a lambeq
Trainer
usually have the extension .lt.- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True)
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Args:
- state_dict (dict): a dict containing parameters and
persistent buffers.
- strict (bool, optional): whether to strictly enforce that the keys
in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns:
NamedTuple
withmissing_keys
andunexpected_keys
fields:missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Note:
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[torch.nn.modules.module.Module]
Returns an iterator over all modules in the network.
- Yields:
Module: a module in the network
- Note:
Duplicate modules are returned only once. In the following example,
l
will be returned only once.
Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]]
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Args:
prefix (str): prefix to prepend to all buffer names. recurse (bool): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
(str, torch.Tensor): Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]]
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module): Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Args:
memo: a memo to store the set of modules already added to the result prefix: a prefix that will be added to the name of the module remove_duplicate: whether to remove the duplicated module instances in the result
or not
- Yields:
(str, Module): Tuple of name and module
- Note:
Duplicate modules are returned only once. In the following example,
l
will be returned only once.
Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]]
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Args:
prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
(str, Parameter): Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter]
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Args:
- recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter: module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
torch.utils.hooks.RemovableHandle
:a handle that can be used to remove the added hook by calling
handle.remove()
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Args:
- name (str): name of the buffer. The buffer can be accessed
from this module using the given name
- tensor (Tensor or None): buffer to be registered. If
None
, then operations that run on buffers, such as
cuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.- persistent (bool): whether the buffer is part of this module’s
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns:
torch.utils.hooks.RemovableHandle
:a handle that can be used to remove the added hook by calling
handle.remove()
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns:
torch.utils.hooks.RemovableHandle
:a handle that can be used to remove the added hook by calling
handle.remove()
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns:
torch.utils.hooks.RemovableHandle
:a handle that can be used to remove the added hook by calling
handle.remove()
- register_load_state_dict_post_hook(hook)
Registers a post hook to be run after module’s
load_state_dict
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearning out both missing and unexpected keys will avoid an error.- Returns:
torch.utils.hooks.RemovableHandle
:a handle that can be used to remove the added hook by calling
handle.remove()
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None
Alias for
add_module()
.
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Args:
- name (str): name of the parameter. The parameter can be accessed
from this module using the given name
- param (Parameter or None): parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Args:
- requires_grad (bool): whether autograd should record operations on
parameters in this module. Default:
True
.
- Returns:
Module: self
- save(checkpoint_path: Union[str, os.PathLike[str]]) None
Create a lambeq
Checkpoint
and save to a path.Example: >>> from lambeq import PytorchModel >>> model = PytorchModel() >>> model.save(‘my_checkpoint.lt’)
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- set_extra_state(state: Any)
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Args:
state (dict): Extra state from the state_dict
See
torch.Tensor.share_memory_()
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Returns a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Args:
- destination (dict, optional): If provided, the state of module will
be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.- prefix (str, optional): a prefix added to parameter and buffer
names to compose the keys in state_dict. Default:
''
.- keep_vars (bool, optional): by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set to
True
, detaching will not be performed. Default:False
.
- Returns:
- dict:
a dictionary containing a whole state of the module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Moves and/or casts the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Args:
- device (
torch.device
): the desired device of the parameters and buffers in this module
- dtype (
torch.dtype
): the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
- memory_format (
torch.memory_format
): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- device (
- Returns:
Module: self
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T
Moves the parameters and buffers to the specified device without copying storage.
- Args:
- device (
torch.device
): The desired device of the parameters and buffers in this module.
- device (
- Returns:
Module: self
- train(mode: bool = True) torch.nn.modules.module.T
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Args:
- mode (bool): whether to set training mode (
True
) or evaluation mode (
False
). Default:True
.
- mode (bool): whether to set training mode (
- Returns:
Module: self
- training: bool
- type(dst_type: Union[torch.dtype, str]) torch.nn.modules.module.T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Args:
dst_type (type or string): the desired type
- Returns:
Module: self
- weights: torch.nn.ParameterList
- xpu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Arguments:
- device (int, optional): if specified, all parameters will be
copied to that device
- Returns:
Module: self
- zero_grad(set_to_none: bool = False) None
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Args:
- set_to_none (bool): instead of setting to zero, set the grads to None.
See
torch.optim.Optimizer.zero_grad()
for details.
- class lambeq.training.PytorchTrainer(model: PytorchModel, loss_function: Callable[..., torch.Tensor], epochs: int, optimizer: type[torch.optim.Optimizer] = <class 'torch.optim.adamw.AdamW'>, learning_rate: float = 0.001, device: int = -1, *, optimizer_args: Optional[dict[str, Any]] = None, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None)[source]
Bases:
lambeq.training.trainer.Trainer
A PyTorch trainer for the classical pipeline.
- __init__(model: PytorchModel, loss_function: Callable[..., torch.Tensor], epochs: int, optimizer: type[torch.optim.Optimizer] = <class 'torch.optim.adamw.AdamW'>, learning_rate: float = 0.001, device: int = -1, *, optimizer_args: Optional[dict[str, Any]] = None, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None) None [source]
Initialise a
Trainer
instance using the PyTorch backend.- Parameters
- model
PytorchModel
A lambeq Model using PyTorch for tensor computation.
- loss_functioncallable
A PyTorch loss function from torch.nn.
- epochsint
Number of training epochs.
- optimizertorch.optim.Optimizer, default: torch.optim.AdamW
A PyTorch optimizer from torch.optim.
- learning_ratefloat, default: 1e-3
The learning rate provided to the optimizer for training.
- deviceint, default: -1
CUDA device ID used for tensor operation speed-up. A negative value uses the CPU.
- optimizer_argsdict of str to Any, optional
Any extra arguments to pass to the optimizer.
- evaluate_functionsmapping of str to callable, optional
Mapping of evaluation metric functions from their names. Structure [{“metric”: func}]. Each function takes the prediction “y_hat” and the label “y” as input. The validation step calls “func(y_hat, y)”.
- evaluate_on_trainbool, default: True
Evaluate the metrics on the train dataset.
- use_tensorboardbool, default: False
Use Tensorboard for visualisation of the training logs.
- log_dirstr or PathLike, optional
Location of model checkpoints (and tensorboard log). Default is runs/**CURRENT_DATETIME_HOSTNAME**.
- from_checkpointbool, default: False
Starts training from the checkpoint, saved in the log_dir.
- verbosestr, default: ‘text’,
See
VerbosityLevel
for options.- seedint, optional
Random seed.
- model
- fit(train_dataset: lambeq.training.dataset.Dataset, val_dataset: Optional[lambeq.training.dataset.Dataset] = None, evaluation_step: int = 1, logging_step: int = 1) None
Fit the model on the training data and, optionally, evaluate it on the validation data.
- Parameters
- train_dataset
Dataset
Dataset used for training.
- val_dataset
Dataset
, optional Validation dataset.
- evaluation_stepint, default: 1
Sets the intervals at which the metrics are evaluated on the validation dataset.
- logging_stepint, default: 1
Sets the intervals at which the training statistics are printed if verbose = ‘text’ (otherwise ignored).
- train_dataset
- load_training_checkpoint(log_dir: Union[str, os.PathLike[str]]) lambeq.training.checkpoint.Checkpoint
Load model from a checkpoint.
- Parameters
- log_dirstr or PathLike
The path to the model.lt checkpoint file.
- Returns
- py:class:.Checkpoint
Checkpoint containing the model weights, symbols and the training history.
- Raises
- FileNotFoundError
If the file does not exist.
- model: PytorchModel
- save_checkpoint(save_dict: Mapping[str, Any], log_dir: _StrPathT) None
Save checkpoint.
- Parameters
- save_dictmapping of str to any
Mapping containing the checkpoint information.
- log_dirstr or PathLike
The path where to store the model.lt checkpoint file.
- class lambeq.training.QuantumModel[source]
Bases:
lambeq.training.model.Model
Quantum Model base class.
- Attributes
- symbolslist of symbols
A sorted list of all
Symbols
occurring in the data.- weightsarray
A data structure containing the numeric values of the model parameters
- SMOOTHINGfloat
A smoothing constant
- __init__() None [source]
Initialise a
QuantumModel
.
- abstract forward(x: list[Diagram]) Any [source]
Compute the forward pass of the model using get_model_output
- classmethod from_checkpoint(checkpoint_path: Union[str, os.PathLike[str]], **kwargs: Any) lambeq.training.model.Model
Load the weights and symbols from a training checkpoint.
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.
- classmethod from_diagrams(diagrams: list[Diagram], **kwargs: Any) Model
Build model from a list of
Diagrams
.- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation in
NumpyModel
.
- abstract get_diagram_output(diagrams: list[Diagram]) Union[jnp.ndarray, np.ndarray] [source]
Return the diagram prediction.
- initialise_weights() None [source]
Initialise the weights of the model.
- Raises
- ValueError
If model.symbols are not initialised.
- load(checkpoint_path: Union[str, os.PathLike[str]]) None
Load model data from a path pointing to a lambeq checkpoint.
Checkpoints that are created by a lambeq
Trainer
usually have the extension .lt.- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- save(checkpoint_path: Union[str, os.PathLike[str]]) None
Create a lambeq
Checkpoint
and save to a path.Example: >>> from lambeq import PytorchModel >>> model = PytorchModel() >>> model.save(‘my_checkpoint.lt’)
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- weights: np.ndarray
- class lambeq.training.QuantumTrainer(model: QuantumModel, loss_function: Callable[..., float], epochs: int, optimizer: type[Optimizer], optim_hyperparams: dict[str, float], *, optimizer_args: Optional[dict[str, Any]] = None, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None)[source]
Bases:
lambeq.training.trainer.Trainer
A Trainer for the quantum pipeline.
- __init__(model: QuantumModel, loss_function: Callable[..., float], epochs: int, optimizer: type[Optimizer], optim_hyperparams: dict[str, float], *, optimizer_args: Optional[dict[str, Any]] = None, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None) None [source]
Initialise a
Trainer
using a quantum backend.- Parameters
- model
QuantumModel
A lambeq Model.
- loss_functioncallable
A loss function.
- epochsint
Number of training epochs
- optimizerOptimizer
An optimizer of type
lambeq.training.Optimizer
.- optim_hyperparamsdict of str to float
The hyperparameters to be used by the optimizer.
- optimizer_argsdict of str to Any, optional
Any extra arguments to pass to the optimizer.
- evaluate_functionsmapping of str to callable, optional
Mapping of evaluation metric functions from their names. Structure [{“metric”: func}]. Each function takes the prediction “y_hat” and the label “y” as input. The validation step calls “func(y_hat, y)”.
- evaluate_on_trainbool, default: True
Evaluate the metrics on the train dataset.
- use_tensorboardbool, default: False
Use Tensorboard for visualisation of the training logs.
- log_dirstr or PathLike, optional
Location of model checkpoints (and tensorboard log). Default is runs/**CURRENT_DATETIME_HOSTNAME**.
- from_checkpointbool, default: False
Starts training from the checkpoint, saved in the log_dir.
- verbosestr, default: ‘text’,
See
VerbosityLevel
for options.- seedint, optional
Random seed.
- model
- fit(train_dataset: lambeq.training.dataset.Dataset, val_dataset: Optional[lambeq.training.dataset.Dataset] = None, evaluation_step: int = 1, logging_step: int = 1) None [source]
Fit the model on the training data and, optionally, evaluate it on the validation data.
- Parameters
- train_dataset
Dataset
Dataset used for training.
- val_dataset
Dataset
, optional Validation dataset.
- evaluation_stepint, default: 1
Sets the intervals at which the metrics are evaluated on the validation dataset.
- logging_stepint, default: 1
Sets the intervals at which the training statistics are printed if verbose = ‘text’ (otherwise ignored).
- train_dataset
- load_training_checkpoint(log_dir: Union[str, os.PathLike[str]]) lambeq.training.checkpoint.Checkpoint
Load model from a checkpoint.
- Parameters
- log_dirstr or PathLike
The path to the model.lt checkpoint file.
- Returns
- py:class:.Checkpoint
Checkpoint containing the model weights, symbols and the training history.
- Raises
- FileNotFoundError
If the file does not exist.
- model: QuantumModel
- save_checkpoint(save_dict: Mapping[str, Any], log_dir: _StrPathT) None
Save checkpoint.
- Parameters
- save_dictmapping of str to any
Mapping containing the checkpoint information.
- log_dirstr or PathLike
The path where to store the model.lt checkpoint file.
- class lambeq.training.SPSAOptimizer(model: QuantumModel, hyperparams: dict[str, float], loss_fn: Callable[[Any, Any], float], bounds: Optional[ArrayLike] = None)[source]
Bases:
lambeq.training.optimizer.Optimizer
An Optimizer using SPSA.
SPSA = Simultaneous Perturbation Stochastic Spproximations. See https://ieeexplore.ieee.org/document/705889 for details.
- __init__(model: QuantumModel, hyperparams: dict[str, float], loss_fn: Callable[[Any, Any], float], bounds: Optional[ArrayLike] = None) None [source]
Initialise the SPSA optimizer.
The hyperparameters must contain the following key value pairs:
hyperparams = { 'a': A learning rate parameter, float 'c': The parameter shift scaling factor, float 'A': A stability constant, float }
A good value for ‘A’ is approximately: 0.01 * Num Training steps
- Parameters
- model
QuantumModel
A lambeq quantum model.
- hyperparamsdict of str to float.
A dictionary containing the models hyperparameters.
- loss_fnCallable
A loss function of form loss(prediction, labels).
- boundsArrayLike, optional
The range of each of the model parameters.
- model
- Raises
- ValueError
If the hyperparameters are not set correctly, or if the length of bounds does not match the number of the model parameters.
- backward(batch: tuple[Iterable[Any], np.ndarray]) float [source]
Calculate the gradients of the loss function.
The gradients are calculated with respect to the model parameters.
- Parameters
- batchtuple of Iterable and numpy.ndarray
Current batch. Contains an Iterable of diagrams in index 0, and the targets in index 1.
- Returns
- float
The calculated loss.
- load_state_dict(state_dict: Mapping[str, Any]) None [source]
Load state of the optimizer from the state dictionary.
- Parameters
- state_dictdict
A dictionary containing a snapshot of the optimizer state.
- model: QuantumModel
- state_dict() dict[str, Any] [source]
Return optimizer states as dictionary.
- Returns
- dict
A dictionary containing the current state of the optimizer.
- zero_grad() None
Reset the gradients to zero.
- class lambeq.training.TketModel(backend_config: dict[str, Any])[source]
Bases:
lambeq.training.quantum_model.QuantumModel
Model based on tket.
This can run either shot-based simulations of a quantum pipeline or experiments run on quantum hardware using tket.
- __call__(*args: Any, **kwargs: Any) Any
Call self as a function.
- __init__(backend_config: dict[str, Any]) None [source]
Initialise TketModel based on the t|ket> backend.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration. Must include the fields backend, compilation and shots.
- Raises
- KeyError
If backend_config is not provided or has missing fields.
- forward(x: list[Diagram]) np.ndarray [source]
Perform default forward pass of a lambeq quantum model.
In case of a different datapoint (e.g. list of tuple) or additional computational steps, please override this method.
- classmethod from_checkpoint(checkpoint_path: Union[str, os.PathLike[str]], **kwargs: Any) lambeq.training.model.Model
Load the weights and symbols from a training checkpoint.
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.
- classmethod from_diagrams(diagrams: list[Diagram], **kwargs: Any) Model
Build model from a list of
Diagrams
.- Parameters
- diagramslist of
Diagram
The tensor or circuit diagrams to be evaluated.
- diagramslist of
- Other Parameters
- backend_configdict
Dictionary containing the backend configuration for the
TketModel
. Must include the fields ‘backend’, ‘compilation’ and ‘shots’.- use_jitbool, default: False
Whether to use JAX’s Just-In-Time compilation in
NumpyModel
.
- get_diagram_output(diagrams: list[Diagram]) np.ndarray [source]
Return the prediction for each diagram using t|ket>.
- initialise_weights() None
Initialise the weights of the model.
- Raises
- ValueError
If model.symbols are not initialised.
- load(checkpoint_path: Union[str, os.PathLike[str]]) None
Load model data from a path pointing to a lambeq checkpoint.
Checkpoints that are created by a lambeq
Trainer
usually have the extension .lt.- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- save(checkpoint_path: Union[str, os.PathLike[str]]) None
Create a lambeq
Checkpoint
and save to a path.Example: >>> from lambeq import PytorchModel >>> model = PytorchModel() >>> model.save(‘my_checkpoint.lt’)
- Parameters
- checkpoint_pathstr or PathLike
Path that points to the checkpoint file.
- weights: np.ndarray
- class lambeq.training.Trainer(model: Model, loss_function: Callable[..., Any], epochs: int, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None)[source]
Bases:
abc.ABC
Base class for a lambeq trainer.
- __init__(model: Model, loss_function: Callable[..., Any], epochs: int, evaluate_functions: Optional[Mapping[str, _EvalFuncT]] = None, evaluate_on_train: bool = True, use_tensorboard: bool = False, log_dir: Optional[_StrPathT] = None, from_checkpoint: bool = False, verbose: str = 'text', seed: Optional[int] = None) None [source]
Initialise a lambeq trainer.
- Parameters
- model
Model
A lambeq Model.
- loss_functioncallable
A loss function to compare the prediction to the true label.
- epochsint
Number of training epochs.
- evaluate_functionsmapping of str to callable, optional
Mapping of evaluation metric functions from their names.
- evaluate_on_trainbool, default: True
Evaluate the metrics on the train dataset.
- use_tensorboardbool, default: False
Use Tensorboard for visualisation of the training logs.
- log_dirstr or PathLike, optional
Location of model checkpoints (and tensorboard log). Default is runs/**CURRENT_DATETIME_HOSTNAME**.
- from_checkpointbool, default: False
Starts training from the checkpoint, saved in the log_dir.
- verbosestr, default: ‘text’,
See
VerbosityLevel
for options.- seedint, optional
Random seed.
- model
- fit(train_dataset: lambeq.training.dataset.Dataset, val_dataset: Optional[lambeq.training.dataset.Dataset] = None, evaluation_step: int = 1, logging_step: int = 1) None [source]
Fit the model on the training data and, optionally, evaluate it on the validation data.
- Parameters
- train_dataset
Dataset
Dataset used for training.
- val_dataset
Dataset
, optional Validation dataset.
- evaluation_stepint, default: 1
Sets the intervals at which the metrics are evaluated on the validation dataset.
- logging_stepint, default: 1
Sets the intervals at which the training statistics are printed if verbose = ‘text’ (otherwise ignored).
- train_dataset
- load_training_checkpoint(log_dir: Union[str, os.PathLike[str]]) lambeq.training.checkpoint.Checkpoint [source]
Load model from a checkpoint.
- Parameters
- log_dirstr or PathLike
The path to the model.lt checkpoint file.
- Returns
- py:class:.Checkpoint
Checkpoint containing the model weights, symbols and the training history.
- Raises
- FileNotFoundError
If the file does not exist.
- save_checkpoint(save_dict: Mapping[str, Any], log_dir: _StrPathT) None [source]
Save checkpoint.
- Parameters
- save_dictmapping of str to any
Mapping containing the checkpoint information.
- log_dirstr or PathLike
The path where to store the model.lt checkpoint file.